
DOTI 1 Q&P __ __ __'_ __ _ __ _ __ _

AD-A229 354

CECOM .. ,j

CENTER FOR SOFTWARE ENGINEERING

ADVANCED SOFTWARE TECHNOLOGY

Subject: Final Report - Real-Time Requirements
Annex for Ada Reusability

CIN: C02 092LA 0010 00

25 April 1990 DT IC
'E LECTE

OCT 1110

4pwd i "c ftjgm3%
Dhtabodan UnlUmittd

Fo =a

REPORT DOCUMENTATION PAGE P.C7"
PVI& am % ow Vftu aft at ftwff 11 N w I hmw rw irftft 9WJ I" ftw I is VOWW" OWW W m"0 ON% W% V

Ow - ~ eb of Mk...- Am w ., w &%n ofW VAoa, -W~ t~igV~ ~ aahg~t ~q~nmb8ftftm. Dvegm : rtwmW -- W.= 616 Afft Casm buf I'A 1ZDA.
0". 00,Wam of~ teUSyAi aWrom mi Wop vfta -Vto DC

1. AGENCY USE ONLY (Lo~ws Bav*) 2. RE PORT DATE 3. REPORT TYPE AND DATES COVERED

2.5 April 1990 Final Report

4. TITLE AND SUBTITLE S. FUIOING NUMBERS

Real-Time Requirements Annex for Ada Reusability DAABO7-85-C- 1,524
TASK 7067-34040

G. AU THOR(S)

Charles J. Albright, Mitchell J. Bassman, Carl Dahike,
Anthony Cargaro

7. PE RFORMING ORGANIZAT ION NAWIE(S) AND ADDR.ESS(ES) 6. PERF0RMING. ORGANIZATION
REPORT NUMBER

Computer Sciences Corporation
1 North Revmont Drive, Suite 30
Shrewsbury, NJ 07702

Sm. SPONSOR INGI.OWTORING AGENCY NAME(S) ANDADORESS(ES) 10. SPONSORINGIMADWTORING AGENCY
REPORT NUMBER

U. S. Army HQ CECOM
Center for Software Engineering
Fort Monmouth, NJ 07703-5000

11. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAh-ABLrTY STATEMENT .2t DSTR~b JTION CODE

STATEMENT A UNLIMITED

3. ABSTRACT (Maxomnrr, 200 worsj

A set of guidelines for writing reusable software parts that satisfy some of the more
common characteristics of real-time applications are provided. The emphasis is on coding- aspects
for developing reusable parts that include time dependency issues. It is structured as a stand-aloneI
annex to a Reusabilitv Handbook. ori-inal1l' developed by Computer Sciences Corporation (CSC)
and enhanced by CECOM, that didn't consider any' time dependency issues. The Annex contains
four sections that provide a context for understanding the guidelines. The issues discussed in these
sections are: distributed execution, task scheduling, error recovery, and resource control. There
are five categories of guidelines included in the Annex: -ansportability. r-un time dependency.
composition orthogonalitv. readability, and efficiency.

14. SP-E TERVJS 1 -. N 0 MEF R)- PA G ES

REAL_-TIME, REUSE, TIME DEPENDENCY, ADA 16. PRICE CODE

SE WRl7y CASSI; tATr P . it, SEcURrrY CLASSI.AT0N ~ i.&CF' SSI-EK.ATIJ, K: C L IWTAT~Y 0N0- ABSTRAC I
0; REPORT OC TH!S PAGE O- ABSTPJ 7

UNCLA"SSIFIED UNCLASSIFIED 1UNCLASSIED U
NSN 7!,4-1-2K-5Z btarnoarc-Dr

Real-Time Requirements Annex

to the

Ada Reusability Handbook

prepared for

U.S. Army HQ CECOM
Center for Software Engineering
Advanced Software Technology
Fort Monmouth, NJ 07703-5000

prepared by

Charles J. Albright
Mitchell J. Bassman

Carl Dahlke
Anthony Gargaro

Computer Sciences Corporation
1 North Revmont Drive, Suite 30

Shrewsbury, NJ 07702

date

31 December 1989

Table of Contents

Annex A ... 1

1. Distributed Execution 3
1.1. Partitioning .. 4
1.2. Virtual Nodes ... 6
1.3. Abstract Partitions 9

2. Scheduling .. 12
2.1. Dynamic Task Priorities 13
2.2. Priority Queues 18
2.3. Predictable Scheduling 24
2.4. Rendezvous Optimizations 27

3. Error Recovery .. 31
3.1. Reliable Transactions 31

3.1.1. Types of Reusable Real-Time Components 33
3.1.1.1. Actor and Server Components 33
3.1.1.2. Atomic and Composite Components 34

3.1.2. Composition of Components 36
3.1.2.1. Deadlock 36
3.1.2.2. Starvation 44
3.1.2.3. Thrashing 46

3.2. Fault Tolerance 48
3.2.1. Tolerance of Task Failure 49
3.2.2. Tolerance of Software Design Flaws 52

3.2.2.1. Recovery Blocks 53
3.2.2.2. N-Version Programming 56

3.2.3. Semantics of Failure in Distributed Ada Prog..57
3.3. Asynchronous Transfer of Control 60

4. Resource Control .. 66
4.1. Task Identification 66
4.2. Interrupts ... 69
4.3. Monitors and Semaphores 72

4.3.1. Binary Semaphores 72
4.3.2. General Semaphores 76
4.3.3. Monitors 78

4.4. Storage Reclamation and Reuse 81

References ... 86

Aooesslon For

NTIS GRA&I
DTIC TAB E]
Unannounced []
Justificatlon

By
Distribution/

Availability Codes
Avail and/or

Dist Speolal

Ada Reusability Handbook Real-Time Requirements Annex

Annex A

Real-Time Requirements

This annex to the CSC Ada Reusablility Handbook (ARH) [CSC87]
provides a set of guidelines for writing reusable software parts
that are required to satisfy some of the more common characteris-
tics of real-time applications.

The annex contains four sections that address the issues of dis-
tributed execution, task scheduling, error recovery, and resource
control. The four topical sections summarize the major issues
pertinent to writing reusable parts for real-time requirements.
These sections are not exhaustive in their treatment of real-time
application characteristics, but provide a context for under-
standing the guidelines associated with each section.

The emphasis in these guidelines differs from that in the ARH.
Whereas the guidelines in the ARH emphasized time-independent
coding aspects of writing reusable parts, the annex guidelines
emphasize coding aspects for developing reusable parts that in-
clude time dependency issues.

The ARH uses four categories of guidelines: transportability,
runtime dependencies, composition orthogonality, amid readability,
which are also used in this annex. The following definitions are
condensed from the ARH.

Transportability guidelines deal with criteria for writing com-
ponents to make it possible to "... move a software p rt to a
different execution environment, obtaining equivalent execution
behavior, and minimizing the source modifications necessary to
accomplish this. ... execution is equivalent in the sense that
it complies with the rules of the RM. The execution, however,
may not be identical, e.g., a series of values printed by the
entries of a select statement may vary depending on the schedul-
ing policy used in differing environments."

Runtime dependency guidelines deal with "the degree to which it
is possible to reuse a software part in the same or different ex-
ecution environment, obtaining identical execution behavior, and
minimizing the source modifications necessary to accomplish this.
Typical issues of concern include task scheduling policy, inter-
rupt response time, and system initialization. Execution must be
identical in the sense that there is no discernible difference in
execution by any criteria of interest."

Composition orthogonality guidelines deal with " ... the degree
to which a component is independent of the context in which it
appears. For example, a subprogram that interfaces with its con-
text through the use of global variables is much more dependent
on its context than one that achieves the same interface through
the use of parameters."

A-1

Real-Time Requirements Annex Ada Reusability Handbook

Readability ciuidelines deal with "the degree to which a part can
be understood and subsequently maintained."

The issues addressed in this Real-Time Annex have led to the
creation of another guideline category, the efficiency guideline.
Efficiency guidelines address the concern for meeting timing
deadlines in a hard real-time environment by indicating choices
that can be made for designing real-time Ada components that take
advantage of some understanding of the compilation system to in-
crease the component's execution speed. One type of efficiency
guideline deals with the use of known compiler optimizations to
increase a component's efficiency. The benefits provided by en-
gineering components to take advantage of such optimizations will
be available when the component is reused in the original
development environment. When the component is transported to
another environment, the benefits will be available only if the
other environment supports the same optimizations. The other
type of efficiency guideline deals with alternatives that have
consistent effects across compilation systems.

The need for a real-time programming discipline has been recog-
nized for many years [ACM77] as essential if real-time programs
are to be analytically verifiable and ultimately reliable. These
attributes of verifiability and reliability are fundamental to
reusable programs. Therefore, it is likely that reusability
guidelines that aid in developing components meeting real-time
requirements will provide a step towards formalizing a real-time
programming discipline.

When execution time becomes an intrusive factor of the applica-
tion, the domain of real-time programming is entered and further
guidelines are warranted. The extent to which execution time
intrudes into the function and performance of an application will
often determine how much part reusability is attainable. When a
part's execution time must satisfy a stringent upper bound to
function correctly, the application is considered to have "hard"
real-time requirements. Unfortunately, "hard " real-time re-
quirements are frequently characteristic of applications that
must execute in computers having limited processing resources.
This characteristic further undermines part reuse, since language
constructs that directly facilitate reuse may be crippled by a
lack of processing capacity. For example, a numerically inten-
sive algorithm may be most accurately formulated by using float-
ing point types attributed to ensure optimal reuse. If, however,
floating point processing is unavailable in the target computer,
execution time may be unacceptable; an alternate formulation
using fixed point types becomes necessary. Similarly, a complex
data retrieval algorithm may be developed by using a type
abstraction that depends upon access types to dynamically manage
data storage. The reuse of the part may be restricted for real-
time applications if storage reclamation costs are excessive due
to space limitations.

A-2

Ada Reusability Handbook Real-Time Requirements Annex

In many instances, the time dependencies of "hard" real-time ap-
plications are less straightforward than meeting the execution
time requirements of a serialized numerical computation. Typi-
cally, such applications include multiple cooperating programs
that respond to many asynchronous and synchronous stimuli, where
failure to respond is a potential threat to the continuing suc-
cessful conduct of the application. Furthermore, in Mission
Critieal Computer Resource (MCCR) applications, the parts must be
resilient to operational errors, computer failures, and
deliberate hostile actions introduced to cause aberrant execu-
tion.

A reusable part for "hard" real-time applications must be
rigorously documented according to a schema that formally
describes the part's execution behavior. At a minimum, this be-
havior should be specified in terms of reusable attributes that
identify the domain(s) of reuse [CEC88]. The reusable at-
tributes, which are independent of the programming language,
should address the critical time dependencies, performance ef-
ficiency, and resiliency of the part. In addition, language-
dependent behavior attributes should be included to ensure a
clear definition of the assumed capacity of the underlying
processing resources, i.e., the Ada Virtual Machine. This level
of documentation is in addition to that recommended in the ARH.

1. Distributed Execution

The requirement to distribute the execution of embedded real-time
applications is becoming increasingly attractive with the
availability of economical, powerful microprocessors and the
rapid evolution of network communication technology. For MCCR
systems, it is expected that many of the software engineering
practices promoted by the Ada language will directly assist the
distributed execution of embedded real-time application programs.
This expectation is often substantiated by citing the note in the
RM, refer 9 (5), that states parallel tasks may be implemented on
multicomputers. Consequently, guidelines for writing reusable
Ada parts should rot preclude the potential distributed execution
of an application that comprises reusable parts.

A comprehensive definition of a distributed execution environment
depends upon such criteria as complexity, cost, function, and
size. For this discussion, the following informal definition is
derived from a restricted interpretation of the term
"multicomputers" that characterizes the near-term environments
emerging for embedded real-time MCCR applications. A distributed
execution environment comprises multiple physically separate
processing resources that may communicate and synchronize with
each other without depending upon physically shared storage. The
interpretation is further simplified by assuming that the
processing resources conform to a consistent specification of the
package SYSTEM. The literature often uses the term "node" to

A-3

Real-Time Requirements Annex Ada Reusability Handbook

designate a separate processing resource, as will the subsequent
sections of the annex.

For the real-time application domain, a distributed execution en-
vironment offers several potential advantages over a centralized
multiprocessor computer. The advantages correspond directly with
many of the characteristics presented in the previously
referenced definition. Major advantages include configurability,
concurrency, and resiliency. Conficurability facilitates adapt-
ing the application to the operational environment. For example,
processing resources may be more easily connected to their data
sinks/sources if they are not constrained to executing within a
single computer. Concurrency facilitates improving application
performance by achieving parallel execution. In many instances,
concurrency may prevent the traditional scheduling problems that
are often critical to the application domain. For example, peri-
odic scheduling originates from the need to share a single
processing resource to perform a specific functional allocation
within precise time boundaries. The ability to perform each
function on a separate processing resource transforms a difficult
scheduling problem into a simpler problem of coordinating paral-
lel functions. Resiliency facilitates protecting the application
from computer failures. For example, degraded mode operation may
often be instituted for an application when a processing resource
fails in a distributed execution environment. This would not be
an option if the processing resources were centralized in a
single computer.

Each advantage partly results from viewing an application as a
set of loosely coupled functions in which each function executes
in its own separate customized execution environment. This view
is in contrast to the more traditional view of a real-time ap-
plication, in which the functionality is tightly coupled in a
single execution environment with limited processing resources,
such as avionics applications.

Unfortunately, these advantages are not automatically achieved by
directly translating an application into a set of reusable Ada
tasks, since an Ada task may not be a suitable unit on which to
partition a given real-time application for a distributed execu-
tiun environment [ACM87b, ACM88a]. Although partitioning by task
has been tried with limited success [CEC89], in general it is
necessary to identify an Ada program partitioning strategy that
is best for the particular real-time application at hand.
Ideally, such a strategy would facilitate combining reusable
parts into a functional allocation that is compatible with a
specific distributed execution environment.

1.1. Partitioning

Several approaches are proposed to partitioning Ada applications
for distributed execution. To briefly review these approaches,
the following paragraphs summarize four informal categorizations

A-4

Ada Reusability Handbook Real-Time Requirements Annex

of partitions: Main, Transparent, Subset , and Virtual Node Par-
titions.

Main Partitions - The unit for partitioning an application in
this approach is an Ada main program, hence the name Main Parti-
tions. This approach is a commonly used technique that requires
an application to comprise multiple main programs and that each
main program is dedicated to a separate node. In the near-term,
this approach may predominate. It is independent of the Ada lan-
guage, allowing an application to gradually transition from ex-
isting languages to Ada. Further, because communication among
nodes is outside the Ada semantic model, the underlying nodal
communication network may be directly used through user-defined
packages. The principal disadvantage of this approach is the
granularity for partitioning. The advantages of the Ada type
model are compromised by the multiple program paradigm. Addi-
tionally, a rigid structure that is constrained by the dis-
tributed execution environment is forced upon the application.
As a result, the application is less adaptable to nodal changes.

Transparent Partitions - The unit for partitioning an application
in this approach is not restricted to specific Ada syntax or
semantic boundaries. For example, a task need not execute on the
same node as its master and declarative regions may extend across
nodes. Therefore, a partition is transparent to the application.
The principal advantage of this approach is that it realizes the
full benefit of the Ada semantic model for distributed execution.
However, it requires special tools to support the unrestricted
partitioning. Further, implementations of the approach have
shown that applications must assume a substantial overhead from
the intrusion of additional constructs these tools generate.
This overhead is unacceptable in the presence of real-time re-
quirements.

Subset Partitions - The unit for partitioning an application is
not restricted. However, only a subset of Ada may be used to
avoid incurring the overhead of the Transparent Partitions. For
example, the use of the terminate alternative might be precluded.
While this approach has the same transparency advantage for the
application as does that for Transparent Partitions, its utility
depends upon limiting the use of Ada. Therefore, it has the dis-
advantage of promoting the proliferation of special Ada subsets.

Virtual Node Partitions - The unit for partitioning an applica-
tion is the aggregation of cohesive Ada program units. There-
fore, the application comprises a library of Ada program units
that can be configured into partitions. This approach attempts
to moderate the two extremes exemplified by Main Partitions and
Transparent Partitions. Although both the application and parti-
tion retain the full benefit of the Ada semantic model of a
single main program, the partitioning is not transparent to the
application. The disadvantage of the approach is that an under-
standing of the nodal topology must necessarily constrain the de-

A-5

Real-Time Requirements Annex Ada Reusability Handbook

pendencies among partitions in order to reduce the communication
processing overhead among remote nodes.

As a near-term practical alternative to Main Partitions, Virtual
Node Partitions offer a partitioning approach that is adaptable
to the stated rationale of the ARH. The properties that must be
possessed by Virtual Nodes imply a methodology for structuring an
Ada program that is conducive to distributed execution on one or
more nodes. Consequently, guidelines for this methodology may be
developed that are complementary to writing reusable parts.

In order to understand the relationship between Virtual Nodes and
writing reusable parts, a synopsis of Virtual Nodes is presented
in the following section.

1.2. Virtual Nodes

Virtuai Nodes may be regarded as a language-independent
application-oriented abstraction that permits expressing the dis-
joint distribution of the target execution environment in the
composition of the application software. Since they represent
the functional allocation to individual nodes, each Virtual Node
encapsulates strongly cohesive units that are not reasonably ex-
ecuted on separate nodes. Consequently, Virtual Nodes are weakly
coupled to each other so that communication overhead and
synchronization overhead are minimized for real-time applica-
tions.

Four fundamental properties are associated with Virtual Nodes.
These are:

1. Each Virtual Node must represent one (or more) distinct
"thread of control(s)" that can be executed on a
separate node;

2. Each Virtual Node must maintain its own internal state
independent of the internal state of other Virtual
Nodes;

3. Units shared among Virtual Nodes must have no internal
state;

4. Communication interfaces among Virtual Nodes must not
rely on access to shared variables.

In the adaptation of Virtual Nodes to Ada, the Ada library is
viewed as comprising a collection of Virtual Nodes that may be
configured for a distributed execution environment. This is sig-
nificant since it emphasizes composing an application rather than
partitioning an application. As a result, two independent steps
become necessary to develop an application for a distributed ex-
ecution environment: composing of an application using Virtual
Nodes and configuring the Virtual Nodes. The first step concerns

A-6

Ada Reusability Handbook Real-Time Requirements Annex

the design and structure of Virtual Nodes in Ada. The second
concerns transforming the resulting Virtual Nodes into executable
components that can be distributed for execution and, in par-
ticular, the addition of remote communication support.

Obviously, writing reusable parts is complementary to achieving
the first step. Further, the criterion for Composition Or-
thogonality is consistent with the properties of Virtual Nodes.
Consequently, reusability guidelines must be formulated that
specifically support the composition of Virtual Nodes. However,
these guidelines must be subordinate to the conventions required
to protect the fundamental properties of Virtual Nodes.

These conventions and their associated terminology are compatible
with those adopted by the DIADEM project [CUP88], which has suc-
cessfully applied them in partitioning "soft" real-time applica-
tions for distributed execution. These conventions permit view-
ing Virtual Nodes of arbitrary complexity as a collection of
library units by restricting the sharing of units and the forms
of communication among Virtual Nodes. In addition, these conven-
tions specify a separate thread of control to permit independent
execution and ensure that the library units are elaborated in a
consistent order.

Unit Sharing - The sharing of objects among Virtual Nodes is
precluded. Therefore, a library unit common to more than one
Virtual Node must not specify visible object declarations that
possess an internal state. Only type declarations, generic dec-
larations, and subprogram declarations may be specified. Conse-
quently, the units are termed template units, and they may in-
clude only other template units in their context clauses.
Library units that do not conform to the above restrictions are
termed nontemplate units, and they may be shared only within a
Virtual Node.

Inter-Node Communication - The communication between Virtual
Nodes is conducted through library units, or "interface
packages." These units contain one or more tasks that define the
remote entries provided to a Virtual Node. A Virtual Node may
include as many interface packages as required. The assumption
is that the Ada rendezvous is the preferred means for inter-node
communication; this choice may not always be appropriate for
"hard" real-time applications.

Independent Execution - The separate thread of control of a Vir-
tual Node is achieved by specifying a procedure that acts as its
root library unit. This unit, the Virtual Node root, includes a
context clause that specifies all library units comprising the
Virtual Node.

The following Ada code fragments provide a simplified illustra-
tion of the above conventions:

A-7

Real-Time Requirements Annex Ada Reusability Handbook

package TemplatePackage is

end Template_Package;

with Template_Package;
package Interface Package is

task Communication Task
entry VN_1_Port (...);

end CommunicationTask;

end InterfacePackage;

package VN_1_Package is

end VN_1_Package;

package VN_2_Package is

end VN_2_Package;

with VN IPackage,
InterfacePackage,
Template_Package;

procedure VN_1_Root is

begin

end VN_1_Root;

with VN_2 Package,
Interface Package,
Template_Package;

procedure VN_2_Root is
begin

Interface Package.Communication Task.VN_1_Port(...);
end VN_2_Root;

In the illustration, two procedures are defined as Virtual Node
roots. Eanh procedure acts as the starting point of the Virtual
Node's dependency graph specified by its context clause. The de-
pendency graphs comprise a shared interface and template package,
and a local nontemplate package. Consequently, the two Virtual
Nodes may be distributed on separate nodes.

Guidelines for Virtual Nodes follow.

RTS Dependency Guideline 1.2-1: Avoid using renote conditional
entry calls.

Discussion: The performance of a conditional entry call to a task
encapsulated in an interface package depends upon the implementa-
tion of remote rendezvous. The term "immediately" in the defini-

A-8

Ada Reusability Handbook Real-Time Requirements Annex

tion of conditional entry calls is ambiguous in the context of
distributed program execution. Therefore, the reuse of an
Abstract Partition may be compromised by dependency upon the in-
terpretation of a zero delay in the absence of a reliable
abstraction for nodal time.

RTS Dependency Guideline 1.2-2: Avoid using remote timed entry
calls.

Discussion: The performance of a timed entry call to a task en-
capsulated in an interface package depends upon the implementa-
tion of remote rendezvous. In the absence of a reliable abstrac-
tion of nodal time for distributed program execution, there is an
ambiguity associated with the implementation's choice for start-
ing the timed delay, i.e., when the call is issued or when the
call is placed on the entry queue. Therefore, the reuse of an
Abstract Partition may be compromised by a dependency on the
precision of the timed delay.

RTS Dependency Guideline 1.2-3: Avoid using a zero delay in a
timed entry call.

Discussion: The definition of a zero delay in a timed entry call
requires starting the rendezvous immediately as for a conditional
entry call. Where the part enclosing the entry call could be in-
cluded in an Abstract Partition, there is a resulting difficulty
in specifying part performance. This is a result of the method
chosen by an implementation with respect to determining
"immediacy" (refer Guideline 1.2-1). For example, a delay of
0.01 may fail, while a delay of 0.0 might succeed.

1.3. Abstract Partitions

Abstract Partitions are derived to support the Virtual Node ap-
proach. Although an Abstract Partition is notionally equivalent
to a Virtual Node, in the absence of a unified concept for Vir-
tual Nodes [ACM88a, AUK88], Abstract Partitions do not mandate a
single form of inter-node communication. Any form of communica-
tion that is consistent with the criteria for software reuse may
be employed. Consequently, if communication between different
nodes is to be conducted using remote entry calls, then the
resulting Virtual Nodes would not be identical to the Virtual
Nodes that would result if remote procedure calls were used al-
though derived from the same Abstract Partitions. The form of
communication is dictated by the application domain, and
reflected in the interface packages. Therefore, the principal
role of Abstract Partitions is to restrict the sharing of remote
data objects and to provide clearly defined remote communication
interfaces. In this respect, that role may be perceived as com-
plementary to the roles of Abstract Objects and Abstract Types,
where the motivating rationale for Abstract Partitions is to con-
trol the latency and synchronization of remote access. Conse-

A-9

Real-Time Requirements Annex Ada Reusability Handbook

quently, construction of an Abstract Partition should emphasize
combining reusable parts so that potential impediments to dis-
tributed execution are reduced or at least clearly specified.

Composition Orthogonality criteria provide the basis for for-
mulating many specific guidelines for composing Abstract Parti-
tions. Guidelines for Abstract Partitions follow.

Transportability Guideline 1.3-1: Avoid exchanging access objects
among different Abstract Partitions.

Discussion: The value of access objects should not be made avail-
able as parameters to remotely visible entries since their repre-
sentation is likely to be node dependent. Therefore, the reuse
of an Abstract Partition is compromised when access object are
used as inter-nodal parameters.

Composition OrthoQonality Guideline 1.3-2: Avoid exchanging task
objects among Abstract Partitions.

Discussion: The value of task objects should not be made avail-
able as parameters to remotely visi; i entries since doing so
violates the composition rule that on.y tasks declared in inter-
face packages may be visible among different Abstract Partitions.

RTS Dependency Guideline 1.3-3: Make available the use of a
specific task entry within an interface package to ensure that an
Abstract Partition does not terminate prematurely.

Discussion: Tasks declared in library units may terminate when
the root procedure terminates, depending upon the implementation
applicable to the node upon which the Abstract Partition resides.
This would result in the premature termination of the Abstract
Partition. Consequently, to increase the reusability of an
Abstract Partition, a specific task entry should be specified
within an interface task to allow for its orderly termination.

Transportability Guideline 1.3-4: Achieve synchronization among
Abstract Partitions through task rendezvous.

Discussion: Entry calls and accept statements in tasks declared
in interface packages should be used to synchronize the execution
of Abstract Partitions. When Abstract Partitions reside on dif-
ferent nodes, real-time performance constraints may require a
relaxation of this guideline.

RTS Dependency Guideline 1.3-5: Avoid using task attributes to
reference a task in a different Abstract Partition.

Discussion: Using the 'Callable and 'Terminated attributes that
reference a task in another Abstract Partition, i.e., an inter-
node communication task, may yield unreliable results when the
Abstract Partitions reside on different nodes.

A-10

Ada Reusability Handbook Real-Time Requirements Annex

Composition OrthoQonality Guideline 1.3-6: Use a collection of
library units to achieve distributed execution.

Discussion: A collection of library units that conform to a set
of composition rules forms the partitioning unit for distributed
execution. This partitioning unit, an Abstract Partition, allows
the reuse of library units for different applications.

Composition Orthogonality Guideline 1.3-7: Ensure that the
library units reused among Abstract Partitions do not contain or
provide access to an object.

Discussion: Reusing library units among Abstract Partitions that
compose a distributed program is permitted only if the units do
not contain or provide access to the declaration of an object,
where an object may be a variable, a task, a file, or a device.
Consequently, because the units may not possess an internal
state, they are independent of node residency. These units are
termed template units.

Composition Orthogonality Guideline 1.3-8: Accomplish communica-
tion among Abstract Partitions through the specification of in-
terface packages.

Discussion: Reusing Abstract Partitions requires that communica-
tion be performed only through entry and procedure calls. The
declaration of the respective tasks and procedures must be encap-
sulated in a library unit termed an interface package. An
Abstract Partition may include one or more interface packages.

Composition Orthogonality Guideline 1.3-9: Distribute a program
through a root procedure that includes in its context clause all
library units composing an Abstract Partition.

Discussion: The specification of an Abstract Partition requires
the definition of a procedure that includes all library units
composing the Abstract Partition in its context (with) clause.
This procedure, the root procedure, is the start of the depend-
ency graph for the Abstract Partition.

Composition Orthogonality Guideline 1.3-10: Ensure that template
units do not include nontemplate units in a context clause.

Discussion: Any context (with) clauses of a template unit may in-
clude references only to other template units. This ensures that
a template unit cannot have any side effects that compromise the
stateless property of a template unit.

Composition Orthogonality Guideline 1.3-11: Ensure that non-
template units include only library units that are included in
the same Abstract Partition.

A-11

Real-Time Requirements Annex Ada Reusability Handbook

Discussion: There is an unresolved issue with respect to
referencing communication tasks contained in interface packages
by nontemplate units. How can a nontemplate unit have visibility
to the entries of a different Abstract Partition?

Composition Orthogonality Guideline 1.3-12: Minimize complex
elaboration dependencies among Abstract Partitions.

Discussion: The elaboration of Abstract Partitions may proceed
independently on different nodes. Therefore, a minimum of de-
pendencies should be made upon the order of this elaboration.

Composition Orthogonality Guideline 1.3-13: Raise an ap-
propriately defined exception in the client task when an error
condition is detected within the body of an accept statement for
which no local recovery is possible.

Discussion: When a server task detects an error condition within
the body of an accept statement for which no local recovery is
possible, an exception indicative of the condition should be
raised in the client task. Doing so is preferable to the alter-
native of returning notification of the error condition through
an actual parameter of the accept statement. The latter strategy
may unnecessarily delay recovery action by the client task while
the server task is reaching the end of the rendezvous, par-
ticularly when the tasks reside in different abstract partitions.
Furthermore, the use of an exception provides the opportunity for
the server task to using an identical manifestation of the condi-
tion, i.e., the exception name.

2. Scheduling

The scheduling control of shared processing resources remains a
principal requirement of many embedded real-time application
programs. This requirement results from the need to transform
complex timing constraints into simpler, more manageable proces-
sor utilization constraints. Until distributed execution en-
vironments mature and make shared processing obsolete, this re-
quirement may limit the reuse of parts enclosing tasks. This
limitation results because in many instances the normal Ada
scheduling semantics do not adequately control the necessary
transformations. Therefore, to partially overcome some of the
difficulties task scheduling introduces in developing reusable
parts, several issues are presented. From these issues, general
guidelines and paradigms are derived that may eventually promote
increased reuse of parts that depend upon some degree of control
of task scheduling.

The particular issues are not exhaustive. Their discussion is
motivated by ongoing initiatives to introduce support of formal
real-time task scheduling algorithms [ACM87b, ACM88a] into the
Ada language for tasks executing on a single processor computer.

A-12

Ada Reusability Handbook Real-Time Requirements Annex

In addition, the normal stipulation on avoiding RTS dependencies
is relaxed, where necessary, in favor of explicitly specified de-
pendencies. This is justified only when a dependency is essen-
tial to demonstrating that a part can be executed correctly. In
other words, without the dependency, the part's execution would
be nondeterministic.

2.1. Dynamic Task Priorities

A frequently cited requirement of "hard" real-time applications
is that the application be able to control dynamically the execu-
tion priority of a thread of control. This capability would
enable a task to change its own priority or that of another task,
depending upon conditions encountered during execution. This ex-
plicit change of priority is separate from the requirement that
the RTS change task priority when it is necessary to support pre-
dictable task scheduling algorithms, such as rate-monotonic, that
depend upon a priority inheritance scheme for task execution in
order to avoid the condition of "priority inversion" in an ap-
plication.

When a reusable part is being written, any dependencies upon the
priority of its enclosing task execution must be carefully
specified, because the notion of priority may be supported quite
differently in those execution environments in which the part may
be reused. n addition, several issues are raised with respect
to developing reusable Ada parts and dynamic task priorities.
Two of the principal issues are antithetical, since they address
introducing dynamic priorities into an application and avoiding
assumptions about dynamic priorities.

The RM provides only limited support for specifying the execution
priority of a task; task priority is static, and therefore fixed.
The priority of a task cannot be changed, unless the task is en-
gaged in a rendezvous with a higher priority task. The task's
priority should be used only to convey the task's relative ur-
gency in order for the RTS to assign processing resources. In
addition, the specification of priority must be a static expres-
sion, thereby preventing its representation as a formal generic
parameter. Consequently, applications that cannot operate under
the constraints of fixed task priorities must apply reusable
techniques to afford some control over task execution priority.
One such technique that is consistent with the RM can be imple-
mented as a reusable paradigm for a restricted form of dynamic
task priorities. This technique exploits the use of the rendez-
vous for changing priority. Any task that is required to change
its priority must conform to a set of rigid conventions for
structuring the parts that are to execute at a specific priority
by enclosing the parts in the body of an accept statement. Im-
mediately prior to the accept statement, an entry call is made to

A-13

Real-Time Requirements Annex Ada Reusability Handbook

a "task priority manager" that activates a task at the required
priority. The activated task includes an entry call to this ac-
cept.

The following reusable parts for dynamically controlling task
priority are presented to detail some of the issues raised by the
paradigm. These parts have been used to demonstrate that with
appropriate synchronization control, task priorities can be suc-
cessfully changed, resulting in the reassignment of processing
resources in an interleaved task execution environment on a
single processor. To reduce the Ada text, the example included
only the essential framework. Similar text that can be derived
from the immediately preceding text or the enclosing context is
denoted by an ellipsis, and the use clause is included to ab-
breviate references that are readily apparent.

with SYSTEM;

package Priorities Data Package is

HiPriority constant SYSTEM.Priority
= SYSTEM.Priority'Last-i;

MedPriority ...

LowPriority ...

type TaskPriority_Type is (Low, Med, Hi);
type PriorityArrayType is array (TaskPriorityType)

of SYSTEM.Priority;
Task Priorities PriorityArrayType

(Hi => HiPriority,
Med => MedPriority,
Low => LowPriority);

end PrioritiesDataPackage;

with Priorities DataPackage;
use Priorities DataPackage;
package UserTasksPackage is

task type UserTask Type is
entry Run (ThisTaskPriority : in TaskPriorityType);
pragma Priority (LowPriority);

end User Task Type;

end UserTasksPackage;

with Priorities DataPackage;
use PrioritiesDataPackage;
with SYSTEM;
package DynamicPrioritiesPackage is

type TaskIdType is limited private;

A-14

Ada Reusability Handbook Real-Time Requirements Annex

task Priority Task is
entry ChangePriority

(UserTask Id : in Task IdType;
TaskPriority : in TaskPriorityType);

pragma Priority (SYSTEM.Priority'Last);
end Priority-Task;

private
-- Reuse:
-- The following declarations ensure that a task
-- cannot directly access the identity of another
-- task.
GlobalTask Id : Integer;
Null_Task_Id : Integer := 0;

type Task Id Type is
record
TaskId : Integer := GlobalTaskId;

end record;

end Dynamic Priorities Package;

with UserTasks_Package;
use UserTasksPackage;
-- Reuse:
-- Elaboration order must be explicitly specified since
-- elaboration of Dynamic Priorities Package is dependent
-- upon the elaboration of the body of User Task Type.
pragma Elaborate (User_TasksPackage);

package body Dynamic_Priorities_Package is

Task Set Size : constant := ...;
subtype Task_Set_Subtype is Integer

range 1..TaskSetSize;
type UserTask TypePointer is access UserTaskType;
type Task_ArrayType is array (TaskSetSubtype)

of UserTaskTypePointer;

User Tasks: TaskArrayType;

-- The following task types make an entry call to the
-- reusable parts that are to execute at a specified
-- priority. Objects of these task types are activated
-- by the "task priority manager" after the reusable
-- part has requested a change in priority.

task type HiTask Type is
entry Get Task (Task Id : in TaskSetsubtype);
pragma Priority (Hi Priority);

A-15

Real-Time Requirements Annex Ada Reusability Handbook

end HiTaskType;

task type Med TaskType is
entry Get Task (Task Id : in TaskSetsubtype);
pragma Priority (MedPriority) ;

end MedTaskType;

task type LowTaskType is
entry GetTask (TaskId : in TaskSetsubtype);
pragma Priority (Low-Priority);

end LowTaskType;

type Hi TaskPointer Type is access Hi TaskType;
type Med_Task_Pointer Type is access Med_Task_Type;
type LowTaskPointerType is access LowTaskType;

task body HiTask Type is
Client : Task_SetSubtype;

begin
accept GetTask (TaskId : in TaskSet Subtype) do
Client := TaskId;

end GetTask;
User Tasks(Client).Run(Hi);

end HiTaskType;

task body MedTaskType is ... ;
task body LowTaskType is ... ;
task body Priority Task is
HiRunner : HiTaskPointer Type;
MedRunner : MedTaskPointerType;
LowRunner : LowTaskPointer_Type;

begin
-- Reuse:
-- The following task identification technique is
-- reusable and is discussed later in the annex.
for TaskId in UserTasks'Range loop
Global TaskId := TaskId;
UserTasks(TaskId) := new UserTask_Type;

end loop;
-- RealTime Assertion:
-- The priority of this task is higher than any
-- task activated in the preceding loop. Therefore,
-- it can be assumed, for logically parallel tasks,
-- that the following assignment will be completed
-- before the activated tasks commence execution.

GlobalTask Id := NullTaskId;
loop

begin
select
accept Change Priority

A-16

Ada Reusability Handbook Real-Time Requirements Annex

(UserTask Id : in Task SetSubtype;
TaskPriority : in TaskPriorityType) do

TaskSetId := User TaskId.TaskId;
case TaskPriority is
when Hi =>

HiRunner := new HiTask-Type;
Hi Runner.GetTask (TaskSetId);

when Med => ...
when Low => ...

end case;
end Change Priority;

or
terminate;

end select;
exception
when others =>

raise;
end;

end loop;
end Priority-Task;

end Dynamic_Priorities_Package;

with Dynamic_PrioritiesPackage;
use Dynamic_PrioritiesPackage;
package body User TasksPackage is

task body UserTaskType is
This Task Id : TaskId_Type;
This-_TaskPriority : TaskPriorityType :=

begin
PriorityTask. ChangePriority

(ThisTaskId, ThisTaskPriority);
accept Run (ThisTaskPriority) do
-- Part that is to be executed at dynamic priority.
end Run;

end UserTask Type;
end UserTasksPackage;

It is important to understand the limitations of the above tech-
nique before reusing it. There is an inherent deficiency with
respect to the immediacy of a task executing at a higher
priority. Once the request to change priority has been accepted,
an indeterminate delay may occur before the task proceeds to ex-
ecute at the new priority, if other tasks are ready for execution
with a priority greater than the static fixed priority of the
task that has requested the change. There are several means of
resolving this problem, provided that all tasks comply with an
established convention that requires each task to voluntarily al-
low the priority change to become effective within some
reasonable upper bound. Alternatively, all tasks in an applica-
tion may be required to synchronize changes in task priority so
that the highest priority change is serviced first. This would
necessitate increased complexity in the "task priority manager."

A-17

Real-Time Requirements Annex Ada Reusability Handbook

This complexity may be avoided if all tasks, after having
synchronized the changes in priority, include a delay as the
first statement of the accept body so that the normal
priority scheduling of task execution is applied.

Guidelines for Dynamic Task Priorities follow.

Transportability Guideline 2.1-1: Avoid assumptions regarding the
default priority of task types.

Discussion: The default priority of task objects of the same task
type need not be identical in the absence of the Priority pragma.
Therefore, when tasks of the same type must be assigned identical
priorities, the Priority pragma should be specified in the task
type declaration.

Transportability Guideline 2.1-2: Avoid assumptions about the
value of the default priority of a task type.

Discussion: The value of the default priority of a task type may
differ among implementations. Therefore, when a task must be as-
signed a specific priority, such as the lowest priority, the
Priority pragma should be used in the task type declaration.

Transportability Guideline 2.1-3: Avoid depending upon task
priority to arbitrate among open accept alternatives of a selec-
tive wait statement.

Discussion: Multiple open alternatives of a selective wait state-
ment are not arbitrated by the priority of tasks in the respec-
tive entry queues. While an implementation may choose to use
task priority to select an accept statement, this is not
guaranteed for all implementations. Therefore, when a reusable
part requires some degree of control in arbitrating among mul-
tiple open accept statements, the part must explicitly define
this arbitration.

2.2. Priority Queues

The development of real-time applications may be hindered by the
requirement in the RM to perform queued task entry calls using a
First-In-First-Out (FIFO) order. For example, if tasks are to be
executed according to the Rate Monotonic Scheduling algorithm,
the upper bound for the worst-case deadline for task execution is
reduced if queued task entry calls are serviced according to task
priority. Consequently, when writing a reusable part that serv-
ices entry calls, it may be necessary to override the FIFO order.
This must be accomplished without depending upon any special
provisions provided through implementation defined pragmas or
calls to the RTS.

A-18

Ada Reusability Handbook Real-Time Requirements Annex

A recommended approach to writing a part to service entry calls
in a non-FIFO order is using entry families [RAT86]. This ap-
proach offers many variations to achieve different orders for
servicing entry queues. Two such variants illustrate reusable
parts that service entry queues based upon a task priority
specified by the calling tasks. Both parts are refinements to
that variant identified to support the Rate Monotonic Scheduling
algorithm (ACM87b]. However, the additional rendezvous inherent
in each part may reduce their utility for "hard" real-time re-
quirements unless they are recognized by compilers as idioms that
are open to extensive optimization.

The technique used by the first variant requires an additional
task to ensure maintaining the prescribed order in the
prioritized entry queue. Both the client and server tasks
transparently rendezvous with this task. This is accomplished by
encapsulating the queueing task in a generic package that
provides the client and server with a procedural interface that
is instantiated for each prioritized entry. In this regard, the
technique is restrictive: the client task cannot use a selective
wait statement in conjunction with a prioritized entry call. The
client procedure, Request Service, registers a client task's re-
quested priority registered for subsequent service by an entry
family and enqueues it in FIFO order on the entry family queue
associated with the requested priority. The client task is then
blocked until the entry family accept statement to dequeue the
client task is executed. That allows the server's accept state-
ment to be called as a procedure. The priority queue task
manages the registration of the client task priorities so that
the entry family accepts are performed in order of priority. The
server procedure causes the server task to be synchronized by the
priority queue task so that it is always waiting to rendezvous
with a client task. Otherwise, the priority order would be com-
promised and the potential for FIFO queueing would again prevail.

The technique used in the second variant is essentially the same
as that of the first, except that an optimization has been ap-
plied. This optimization eliminates the server task by fusing
the accept body of its prioritized entry into the priority queue
task. Consequently, the server procedural interface is no longer
required since the client task to be serviced is always properly
synchronized because the dequeue request was accepted. The
elimination of the server task introduces restrictions that may
reduce the reusability of the part.

The two example variants follow.

A-19

Real-Time Requirements Annex Ada Reusability Handbook

-- Priority-Queue (Variant 1). This variant requires three
-- additional rendezvous in providing a reusable part for
-- prioritizing an entry queue.
-- Reuse:
-- The package must be instantiated for every entry queue
-- that is to be serviced in a prioritized order.

generic

type PriorityType is ();
type EntryParamsType is private;
with procedure Entry_Procedure

(EntryParams : in out EntryParamsType);

package PriorityQueueTemplate is

-- Reuse:
-- The procedural interface for client tasks.

procedure Request Service
(RequestPriority : in PriorityType;
(Request Params : in out EntryParamsType);

-- Reuse:
-- The procedural interface for server tasks.
-- A call to this procedure must precede the
-- accept body for the prioritized entry.

procedure AcceptRequest;

end PriorityQueueTemplate;

package body PriorityQueueTemplate is

task Priority_QueueTask is
entry UnblockServer;
entry EnqueueClient

(Request_Priority : in PriorityType);
entry Dequeue_Client (PriorityType);

end PriorityQueueTask;

task body PriorityQueueTask is
NextPriority : PriorityType

PriorityType'First;
BlockedClients array (PriorityType)

of Natural := (others => 0);
begin

loop
select

accept EnqueueClient
(Request_Priority : in PriorityType) do

A-20

Ada Reusability Handbook Real-Time Requirements Annex

Blocked Clients(RequestPriority) :=
Blocked Clients(Request_Priority) + 1;

if Request Priority NextPriority then
NextPriority := RequestPriority;

end if;
end EnqueueClient;

else
if NextPriority = PriorityType'First and

BlockedClients(PriorityType'First) = 0 then
select
accept EnqueueClient

(Request_Priority: in PriorityType) do
NextPriority := RequestPriority;
BlockedClients(Request_Priority) := 1;

end EnqueueClient;
or

terminate;
end select;

end if;
select
accept UnblockServer;

-- Assertion:
-- There is at least one client task waiting or is
-- ready to wait for this entry.

accept DequeueClient(Next_Priority);
Blocked Clients(NextPriority) :=

BlockedClients(NextPriority) - 1;

if NextPriority > PriorityType'First and
Blocked Clients(NextPriority) = 0 then
NextPriority :=

PriorityType'Pred(NextPriority);
end if;

else null;
end select;

end select;
end loop;

end PriorityQueueTask;

procedure RequestService
(RequestPriority : in Priority Type);
(RequestParams : in out EntryParamsType) is

begin

PriorityQueue Task.Enqueue Client (Request Priority);
PriorityQueueTask. DequeueClient (Request-Priority);
-- Assertion:
-- There can be no task already waiting on the
-- entry bound to the procedure.
Entry Procedure (RequestParams);

A-21

Real-Time Requirements Annex Ada Reusability Handbook

end Request Service;

procedure Accept-Request is

begin

PriorityQueueTask.UnblockServer;

end AcceptRequest;

end PriorityQueueTemplate;

-- PriorityQueue (Variant 2). This variant requires one
-- additional rendezvous in providing a reusable part for
-- prioritizing an entry queue.
-- Reuse:
-- The package must be instantiated to replace each entry
-- that is to be serviced in a prioritized order. The
-- accept body of the replaced entry becomes a service
-- procedure that is bound to an entry family.
generic

type PriorityType is ();
type EntryParamsType is private;
with procedure Entry 0iccedure

(EntryParams : in out EntryParamsType);
package PriorityQueueTemplate is

-- Reuse:
-- The procedural interface for client tasks.

procedure RequestService
(RequestPriority : in PriorityType;
RequestParams : in out EntryParamsType);

end PriorityQueue_Template;

package body Priority_Queue_Template is
task Priority-QueueTask is
entry UnblockServer;
entry Enqueue_Client

(RequestPriority : in PriorityType);
entry Dequeue_Client

(RequestPriority : in PriorityType;
(RequestParams : in out EntryParamsType);

end Priority_Queue_Task;

task body PriorityQueueTask is
NextPriority : Priority_Type

:= PriorityType'First;
BlockedClients : array (PriorityType)

A-22

Ada Reusability Handbook Real-Time Requirements Annex

of Natural := (others => 0);
begin

loop
select

accept EnqueueClient
(Request_Priority : in PriorityType) do
Blocked Clients(RequestPriority) :=
Blocked-Clients(RequestPriority) + 1;
if Request-Priority > NextPriority then

NextPriority := Request_Priority;
end if;

end Enqueue Client;
else

if NextPriority = Priority Type'First and
BlockedClients(PriorityType'First) = 0 then

select
accept EnqueueClient

(RequestPriority : in PriorityType) do
NextPriority := Request Priority;
BlockedClients(RequestPriority) := 1;

end EnqueueClient;
or

terminate;
end select;

end if;
-- Assertion:
-- There is at least one client task waiting or is
-- ready to wait for this entry.

accept DequeueClient(NextPriority)
(Request_Params : in out EntryParamsType) do
-- Call service to be performed for client task.
Entry_Procedure (RequestParams);

end DequeueClient;
Blocked Clients(Next_Priority)
Blocked_Clients(NextPriority) - 1;

if NextPriority > PriorityType'First and
Blocked Clients(NextPriority) = 0 then
NextPriority := PriorityType'Pred(NextPriority);

end if;
end select;

end loop;
end Priority Queue_Task;

procedure Request_Service
(RequestPriority : in PriorityType;
RequestParams : in out EntryParamsType) is

begin

PriorityQueue_Task.EnqueueClient (Request-Priority);
PriorityQueue_Task.DequeueClient

(Request_Priority, Request_Params);

A-23

Real-Time Requirements Annex Ada Reusability Handbook

end RequestService;

end PriorityQueueTemplate;

2.3. Predictable Scheduling

An important characteristic of embedded real-time applications is
the ability to predict reliably the scheduling of task execution.
This predictability is at risk when an application is composed
from reusable parts that contain tasks. The correct scheduling
of a task in one application is no guarantee that it will be cor-
rectly scheduled in a new application unless the parts are
designed to enforce a task scheduling discipline that can be
proved predictable. As a result, composing deadline-driven or
"hard" real-time applications from reusable parts requires using
formal scheduling theory guidelines, particularly when the ap-
plication is targeted for a different Ada RTS from that used to
develop the parts originally.

While, in the near-term, specific guidelines cannot be formulated
to guarantee the predictability of task scheduling, emerging
techniques derived from priority inheritance protocols provide
the basis for guidelines that may have future application. One
such technique is the priority ceiling protocol. This protocol
facilitates the reuse of parts for a limited, but useful, domain
of real-time applications by carefully separating timing issues
from predefined logical paradigms for tasks composing an applica-
tion. However, since this protocol has been proven only under
controlled conditions, the claimed predictability and improved
processor utilization should be carefully reviewed for each ap-
plication.

The premise for priority inheritance protocols is to reduce the
occurrence of priority inversion in an Ada application that uses
tasks of different priorities. Priority inversion arises when a
low priority task can indefinitely block the execution of a
higher priority task. The priority ceiling protocol minimizes
this blocking time within predictable bounds and prevents non-
trivial forms of tasking deadlock. The overall effect is that
higher priority tasks complete earlier than under the basic
priority inheritance protocol. Applying the protocol, requires
the following rules on the use of Ada tasks:

1. Each non-server task must be assigned a priority.
2. Server tasks must not be assigned a priority.
3. Conditional and timed entry calls may not be used.
4. Server tasks comprise a single continuous loop that

encloses an unguarded select statement.
5. The select statement may enclose only accept state-

ments.
6. Nested accept statements may not be used.

A-24

Ada Reusability Handbook Real-Time Requirements Annex

The above rules are stated in terms of client tasks and server
tasks. A server is in essence a semaphore that controls entries
to critical regions, and a client is simply a task that calls
these entries. Further, only server tasks may enclose accept
statements, and a client task must enclose at least one entry
call to a server task. A non-server task is a task that does not
enclose accept statements. Consequently, the set of client tasks
is not equivalent to the set of non-server tasks. A typical
server task has the following structure:

task type ServerTaskType is
entry Critical Region_1 (...);

entry Critical Regionn (...);
end Server Task Type;

task body ServerTaskType is
begin

loop
select
accept CriticalRegion_1 (...) do

end CriticalRegion_1;

or
accept CriticalRegionn (...) do

end CriticalRegionn;
end select;

end loop;
end ServerTaskType;

The protocol ensures that a task's execution can be delayed only
by its pre-emption by a higher priority non-server task (or the
execution of a server on behalf of such a client task), or by its
being blocked by a server executing on behalf of a lower priority
task. This blocking is limited to, at most, the longest call
made by a lower priority client. In this context a server is
defined as "executing on behalf of" a client task if either the
client is on an entry queue of, or is in rendezvous with, the
server, or if the server has been called by a server executing on
behdlf of the client task.

The protocol derives its name from associating each server task
with the highest (ceiling) priority of any client task that may
call it. This ceiling priority is used by the RTS to prioritize
entry calls. In particular, it is used to determine whether or
not to block the execution of the calling client task. This use
of priority ceiling and the changing of the priority of server
tasks places specific requirements (dependencies) upon the RTS

A-25

Real-Time Requirements Annex Ada Reusability Handbook

implementation. The dependencies affect the atomicity of
processing entry calls, the adoption of client priorities, and
the inheritance of non-server priorities by server tasks.

Three types of blocking may occur using the protocol. They are
defined as:

1. Direct blocking: the server task is executing on be-
half of a client task; the client is blocked according
to normal Ada rules.

2. Push-through blocking: a server task is executing on
behalf of a lower priority client task with an in-
herited priority of a high priority client task; this
situation may delay the execution of a medium priority
task.

3. Ceiling blocking: a server task is executing with a
priority ceiling that is greater than or equal to that
of the client task; the client task is blocked.

The rules for constructing Ada tasks and the above definitions
may be used to describe the priority ceiling protocol informally.
The description is presented with respect to the actions as-
sociated with the occurrence of a pre-emptive condition, reaching
an entry call, reaching a select statement, and reaching the end
of an accept statement. In addition, tasks are assumed to be in
one of three states: blocked, executing, or schedulable.

1. When a pre-emptive condition occurs, such as the ex-
piration of a delay statement by a higher priority
non-server task, the currently executing task becomes
schedulable and the highest priority schedulable task
is then executed.

2. When a select statement is reached and no client task
is currently queued for service, the server task is
blocked according to normal Ada rules and the highest
priority non-blocked task is scheduled for execution.
Once a non-server task is schedulable, a select state-
ment cannot be reached without a call having been made
by a client task.

3. When an entry call is made by a client task, the client
task is blocked. The type of blocking is then defined
depending upon the state of all server tasks. If no
server task is executing on behalf of any client task,
the server task adopts the client task priority and be-
comes schedulable for execution. This situation
results in direct blocking of the client task. If one
or more server tasks are executing on behalf of client
tasks, the priority ceiling of each server task is com-
pared to that of the immediate calling client task. If

A-26

Ada Reusability Handbook Real-Time Requirements Annex

the client priority is greater, the conditions are
equivalent to no server task executing on behalf of a
client task. Otherwise, the priority of the highest
priority blocked client task is inherited by the server
executing on behalf of the highest priority client, and
the server task becomes schedulable for execution.
This situation results in priority ceiling blocking of
the client task, and may cause push-through blocking if
a medium priority task becomes blocked.

4. When the end of an accept statement is reached, the
highest priority task blocked by the server task
enclosing the accept statement is unblocked and becomes
schedulable for execution.

One rule for constructing server tasks is that they must not be
assigned an explicit priority. This rule permits the server
tasks to be scheduled for execution, by interpreting RM 9.8 (5)
with respect to the statements "the scheduling rules are not
defined" and "at least that priority," so that a server task may
reliably pre-empt a client task before the entry call is com-
pleted. It also enables a client task to conveniently inherit
priorities.

The protocol ensures that only one client can be queued for a
server task, that only self-imposed deadlock can occur, and that
client tasks are unblocked in order of priority.

2.4. Rendezvous Optimizations

The time required to perform a rendezvous depends on several fac-
tors. In fact, the discussion of rendezvous optimization should
probably address two topics: the rendezvous itself and the func-
tion served through the use of the rendezvous. The first topic
is largely a language issue, initially the concern mainly of lan-
guage designers and implementers of compilers and runtime en-
vironments. The application builder, of course, must understand
the resulting rendezvous definitions and implementation to use
them effectively. This leads to the second topic, which com-
prises application design strategies and Ada coding techniques.
In a real-time application, the goal is to employ rendezvous to
advantage safely and efficiently.

The basic Ada rendezvous is a synchronous, asymmetrical interac-
tion of a calling (producer or client) task or subprogram with a
called (consumer or server) task. It is synchronous because it
can occur only when both parties are available at the same time.
It is asymmetrical in that (1) a caller must know the name and
specification of the called task, while the called task does not
know the name of the caller(s); and (2) a caller may start only
one rendezvous at a time while the called task may have a number
of callers queued waiting for service.

A-27

Real-Time Requirements Annex Ada Reusability Handbook

In a typical implementation, an entry call causes the suspension
of the client task and a subsequent context switch to the server
task. When the server task completes execution of its accept
statement, the client task is placed in a ready-to-execute state
that is eventually followed by a context switch to the client
task. Thus, at least two context switches are required to com-
plete the rendezvous. Unfortunately, a context switch includes
overhead processing that degrades system performance.

The optimization proposed by Habermann and Nassi (HAB80] ad-
dresses the context switch overhead problem. Briefly stated,
this proposal would have the compiler recognize that certain
server task entries could be replaced by a procedure, with the
necessary calling synchronizations being performed through the
use of low-level operating sybtem event flags. It has been
reported [BUR87] that, in one implementation, a procedure call is
45 times faster than a two-context-switch rendezvous, which makes
this approach to optimization look very attractive.

The general Habermann and Nassi algorithm handles cases that in-
clude select statements with delay and else alternatives, nested
accept statements, and exceptions raised during rendezvous. This
algorithm reduces but does not eliminate all context switching.
However, in some simpler situations it may be possible to
eliminate the server task completely if the rendezvous code is
structured appropriately. One of the requirements is that all
server task code executed as a result of a rendezvous be posi-
tioned within the accept statement. Therefore, all other code in
the task can be considered, by default, to be administrative code
that is of no interest to the calling task. The compiler might
then be able to replace the task's accept statements with inline
procedures guarded as required by low-level event flags. The
task, as a separate context, can then be discarded.

Some design tradeoffs must be considered concerning the amount of
code executed during a rendezvous. Whether or not a compiler is
capable of rendezvous optimizations, it may be more desirable in
a particular application to maximize concurrency by minimizing
the amount of code executed during a rendezvous. If the code
that might be moved into the accept statement is lengthy and has
little relevance to the calling task's job, the performance of
the calling task may be impaired.

When compiler-provided rendezvous optimizations are unavailable,
some techniques can still make rendezvous more efficient for
selected tasks of an applications. For example, it may be impor-
tant that a producer task be able to perform a rendezvous with a
consumer task asynchronously, that is, that it need not wait for
execution in the consumer task to reach the applicable accept
statement. An asynchronous rendezvous can be approximated by
positioning a passive buffer task between the producer and con-
sumer tasks. The buffer task accepts calls from either of the

A-28

Ada Reusability Handbook Real-Time Requirements Annex

other tasks, stores and retrieves data as requested, and calls no
other tasks. Thus the buffer task can spend most of its time
being ready to respond immediately to the next caller. Since
only minimal processing is performed during the rendezvous
(probably only parameter copying), the rendezvous can also be
completed quickly. The cost of this technique is an increase in
the number of context switches; the benefits are increased con-
currency and improved response in critical tasks.

A buffer task is just one form of intermediary task. Others may
be useful in a particular application. An active, one-item buf-
fer, often called a transporter task, is designed to call one
task to receive data and then to call another task to pass on the
received data. Also, a type of intermediary known as a relay
task is a hybrid of the buffer and transporter tasks: it both
makes and accepts calls to and from other tasks. The problem
with a relay task is that any delay it incurs while calling a
task may affect its response to incoming calls.

Task arrangements using intermediaries are summarized below. The
arrows point from the calling task to the called task, while data
are assumed to move from left to right, from the producer to the
consumer.

Buffer: (Producer) -> (Buffer) <- (Consumer)

Transporter: (Producer) <- (Transporter) -> (Consumer)

Relayl: (Producer) -> (Relay) -> (Consumer)

Relay2: (Producer) <- (Relay) <- (Consumer)

A transporter is an active task, a pure caller or actor, while a
buffer is a passive task, a pure server. Producer and consumer
tasks are either actor or server tasks but never both, while
relays are always both and are therefore hybrid tasks. Note that
a relay task is equivalent to a back-to-back configuration of a
buffer and a transporter task. Actually creating the relay in
this manner may help solve its response problem mentioned above,
although at the expense of additional context switches.
Diagrammed as before, this arrangement appears as follows:

Relayl: (Producer) -> (Buffer) <- (Transporter) -> (Consumer)

Relay2: (Producer) <- (Transporter) -> (Buffer) <- (Consumer)

Another rendezvous efficiency issue concerns the use of the open
terminate alternative of the select statement. The presence of
the open terminate alternative may add to execution overhead when
there are no waiting entry calls because the task is required to
determine whether or not it should terminate. It does this by

A-29

Real-Time Requirements Annex Ada Reusability Handbook

examining the completion state of other tasks in the current task
hierarchy; the more complex the hierarchy, the longer this ex-
amination is likely to take.

This overhead can be minimized in several ways, the most obvious
of which is to avoid building complex hierarchies of tasks. One
can also seek to avoid unnecessary task terminations, especially
in embedded systems that perhaps never normally complete execu-
tion. If terminations are necessary, the terminate alternative
can be guarded so that only the guard expression need be
evaluated when the select statement is executed.

The topic of termination overhead is touched upon again below in
Section 4.3.1 Binary Semaphores.

Guidelines for Rendezvous Optimization follow.

Efficiency Guideline 2.4-1: Where compiler provided rendezvous
optimizations are provided, consider structuring the called task
entry to include within the accept statement all code that will
be executed as a result of the rendezvous.

Discussion: The compiler may be able to remove simple task in-
teractions and replace them with procedure calls that will permit
faster execution.

Efficiency Guideline 2.4-2: To increase application task concur-
rency and maximize system response, carefully subdivide functions
across active and passive tasks, avoiding hybrid tasks if pos-
sible.

Discussion: Active tasks should do the main work of the applica-
tion. Such tasks will probably be the most complex, and they can
use calls to other tasks to reduce some of the complexity. Pas-
sive tasks are best used to provide controlled access to
resources such as storage and I/O devices. The main reason for
avoiding hybrid tasks is that their active side exposes them to
outside control (and possible indefinite blockage), which may
cause failure of their passive functions.

Efficiency Guideline 2.4-3: Where speed of execution is impor-
tant, it may be wise to avoid building complex hierarchies of
tasks. If building such hierarchies is necessary, at least take
care to avoid unnecessary task completions and terminations
[BAK85].

Discussion: A selective wait statement may include a terminate
alternative. The correct implementation of the terminate alter-
native imposes special demands on the tasking supervisor. It
adds execution cost to the selective wait statement that is in
the worst case proportional to the number of surrounding levels
of nested tasks [BAK85].

A-30

Ada Reusability Handbook Real-Time Requirements Annex

Efficiency Guideline 2.4-4: Do not use an open terminate alter-
native in an intermediary task, such as a buffer task.

Discussion: The purpose of an intermediary task is to speed up
rendezvous response, but an open terminate alternative may delay
accept processing.

3. Error Recovery

Diagnosis and processing of hardware and software errors are com-
monly considered among the more difficult problems in the design
of embedded real-time applications. Consequently, a reusable
part must possess a high degree of reliability and resiliency to
error conditions.

Reliability ensures that a part has planned contingencies for all
predictable local error conditions so that normal processing is
recovered with only minor perturbation to the application. Con-
versely, resiliency ensures that a part confronted with unpre-
dictable error conditions, for which no planned contingencies are
possible, initiates some recovery action possibly outside of the
part's control. Relinquishing control of this action may result
in a major perturbation to the application. This may be un-
avoidable in the presence of error conditions that result from
exceeding processing capacity limits.

While the application domain warrants a high degree of
reliability and resiliency, detecting and accommodating error
conditions are frequently restricted by performance efficiency
considerations. Therefore, guidelines for error recovery become
increasingly important in writing reusable parts. General
guidelines that apply to the identification, isolation, and use
of exceptions are presented in Chapter 11 of the ARH. However,
supplementary guidelines are needed to address specific error
conditions that may occur when the application must satisfy
real-time requirements. These applications are particularly sus-
ceptible to external errors generated by the target execution,
deadlock and starvation conditions, storage errors, and timing
errors. It is also essential that these conditions be inter-
cepted before they are camouflaged so that recovery action or
damage control becomes impossible.

3.1. Reliable Transactions

A transaction between two tasks consists of the exchange of some
defined set of information and/or control signals. The
mechanisms used by tasks to perform transactions are the rendez-
vous and accessing shared global variables. The issues involved
in designing reliable transactions include ensuring that transac-
tions execute without deadlock, starvation, or thrashing; that
transactions occur within the timing constraints imposed by the
application requirements; and that exchanged data are protected

A-31

Real-Time Requirements Annex Ada Reusability Handbook

from overlapping updates or race conditions. This section
focuses on reusability principles that ensure that transactions
execute without deadlock, starvation, or thrashing. Timing con-
straint issues are dealt with in Section 2 Task Scheduling. Data
protection issues are dealt with in Section 4.3 Monitors and
Semaphores.

Deadlock is a situation in which two or more tasks interact so
that none of the tasks can proceed. This state can be caused by
contention for resources or by cyclical waiting for services that
each provides the other. Starvation is a situation in which one
or more tasks are blocked for an arbitrarily long time. In en-
suring reliable transactions, only inappropriate starvation
resulting from design flaws is of interest. ThrashinQ is a con-
dition in which tasks fail to rendezvous at a given entry because
both caller and called sides of the rendezvous use conditional or
timed constructions for calling and accepting the entry.

Since reading or writing global variables cannot produce deadlock
or starvation, transactions performed using global variables will
be of concern only in those cases in which the rendezvous
mechanism is used to protect the global variables, such as
through use of a A ary semaphore. Use of global variables
reduces reusabil i -. by creating context dependencies in the
program units ta.. access them. Because global variables have
other well-kr:wn liabilities in addition to this reusability
problem, thry should be used only to meet performance require-
ments.

This section also excludes general issues of interprocess com-
munication. Although Ada main programs may exchange data by such
means as sharing memory or using network communication
facilities, the Ada language provides no direct support for per-
forming safe interprocess communication. In contrast, the ren-
dezvous provides a mechanism for performing safe intertask com-
munication. Since these guidelines deal with Ada language
issues, the solutions to problems of providing reliable transac-
tions between Ada main programs lies outside their scope.

The reliability problems dealt with in this section arise from
the networks of task interactions that are established when
reusable components are composed into applications; they are not
inherent in real-time components per se. A component that per-
forms reliably in one composition of an application may not per-
form reliably in another. This discussion first identifies the
kinds of tasks that can appear as reusable components and then
discusses problems and methods of application composition. The
guidelines for task design are incorporated into the discussion
of application composition since specific guidelines for task
design respond to specific problems that emerge when composing
applications.

A-32

Ada Reusability Handbook Real-Time Requirements Annex

3.1.1. Types of Reusable Real-Time Components

Reusable real-time Ada components typically incorporate tasks.
Their incorporation of tasks differentiates real-time Ada com-
ponents from reusable sequential Ada components. Since tasks
cannot be independently compiled, reusable real-time components
are either packages or separately compiled subprograms. This
section discusses two dimensions that characterize real-time com-
ponents: the actor/server dimension and the atomic/composite
dimension.

3.1.1.1. Actor and Server Components

Ada tasks incorporate an intrinsic actor/server model. Pure ac-
tor tasks provide no services to other tasks. They may have
entry calls for system initialization and shutdown purposes.
Pure server tasks have entry calls that provide services to other
tasks and do not call on other tasks to provide services. Tasks
can combine the attributes of actors and servers, providing serv-
ices to some tasks while receiving services from others. Such
tasks are hybrids.

The actor/server relationship is asymmetric. An actor task must
name the server tasks it calls, but server tasks do not know the
name of the actor tasks calling them. This asymmetry does not
prevent actor tasks from being cast in the form of reusable com-
ponents; the generic package mechanism provides the means for in-
forming an actor task of the names of entries it is to call.
This mechanism is used by declaring, as generic formal
parameters, procedures whose parameters match the parameters of
the server task entries to be called by the actor task. When the
package is instantiated, the generic formal procedure parameters
are matched by task entries. The example below illustrates the
use of this mechanism to build a system from two server tasks and
a generic package containing an actor task that pumps data be-
tween the two server tasks.

with TBD;
package System_1 is

task XProducer is
entry GiveMeA (X out TBD.DataType);

end X Producer;
end System_1;

with TBD;
package System_2 is

task XConsumer is
entry Here Is A (X : in TBD.DataType);

end X Consumer;
end System_2;

A-33

Real-Time Requirements Annex Ada Reusability Handbook

generic
type Items is private;
with procedure Get (I : out Items);
with procedure Put (I : in Items);

package Pumps is
end Pumps;
package body Pumps is

task MoveIt;

task body MoveIt is
I : Items;

begin
loop
Get(I);
Put(I);

end loop;
end Move It;

end Pumps;

-- This program initiates the execution of a tasking system
-- with a generic actor task that connects two server tasks.

with TBD,
System1,
System_2,
Pumps;

procedure Main is
package XPump is new Pumps(TBD.Data_Type,

Systeml.XProducer.Give_Me_A,

System 2.XConsumer.HereIsA);
begin

null;
end Main;

The skeletal Pumps package shown in this example can be modified
to serve a variety of needs such as buffering data, providing for
graceful system shutdown, and so forth.

3.1.1.2. Atomic and Composite Components

Atomic components contain only one task. Composite components
contain networks of task interactions that may be constructed
using reusable components. A composite component must guarantee
that its internal network of tasking interactions is not subject
to deadlock or starvation.

The information required for incorporating a reusable server com-
ponent into an application is a specification of the behavior of
the task's interface. For an actor component, the information
required is a statement of how the component uses the task
entries and data types for which it can be instantiated. The

A-34

Ada Reusability Handbook Real-Time Requirements Annex

body of a generic package treats generic formal procedure
parameters as procedures even if they are instantiated with task
entries. Since timed and conditional calls cannot be made to
procedures, generic reusable actor tasks make only untimed, un-
conditional calls on the entries with which they are instan-
tiated.

If a composite component uses resources that are also used by
other tasks not part of the component, the composite component
may potentially enter a resource contention deadlock with the
other task. Therefore, a composite component must identify any
shared resource management tasks it accesses so that the poten-
tial for resource contention deadlock can be evaluated. This is
not a problem for atomic components, since they either are shared
resource managers or do not access shared resource managers. If
a component accesses a shared resource manager, the component
uses two tasks, one of them being the resource manager, and the
component is therefore not atomic.

A general principle for constructing composite components is that
a pair of composite components should share no tasks except for
those managing shared resources. A pair of composite components
could share a task object if it is declared in, or accessed
through, a package specification used by both composite com-
ponents. Consider two composite components that have been cor-
rectly designed to perform reliable transactions. The
reliability of transactions in an individual composite component
depends on the interactions among its tasks. If two composite
components share a task object L, the safety of each individual
component may be compromised by the addition of interactions that
were not taken into account when the component was designed. Un-
less the shared task L manages a common resource required by both
composite components, both composite components should use a
separate task object to prevent the occurrence of unplanned task
interactions.

Providing composite components with separate copies of tasks per-
forming a function common to both composite components can be
achieved in two ways: through task types and through generic
packages. If the task is directly visible to the composite com-
ponents, then it should be declared as a task type and each com-
posite component should declare an object of the task type for
its own use. Often, reusable components (such as monitors) hide
task entry calls inside a procedural interface to perform such
functions as enforcing a protocol for calling task entries. In
this case, the package enclosing the tasking construct should be
generic, and each composite component should declare its own in-
stantiation of the generic package. With either approach, the
separate declarations guarantee that the composite components
will have no task objects (and therefore no transactions) in com-
mon other than those that manage resources.

A-35

Real-Time Requirements Annex Ada Reusability Handbook

3.1.2. Corposition of Components

This section describes methods of avoiding deadlock, inadvertent
starvation, and thrashing when constructing applications from
real-time components.

3.1.2.1. Deadlock

Deadlock occurs when a set of tasks meets two conditions:

1. The tasks are all in a dead state (not making progress
through their statements).

2. The tasks depend on each other's progress for exiting
from the dead state.

Since none of the tasks is making progress, none of the tasks
ever emerges from the dead state. Tasks very commonly enter dead
states without being deadlocked. For example, a server task
waiting at an accept statement is in a dead state. Deadlocked
tasks have not necessarily stopped executing; they may be engaged
in some form of busy waiting. Two broad classes of deadlock are
those caused by cyclical waiting relationships among tasks
(sometimes termed mutual task dependence) and those caused by
contention for resources.

3.1.2.1.1 Cyclic Waiting Deadlocks

A cyclical waiting deadlock is one in which a tdsk A is waiting
for a task B service, and task B is waiting for a task A service.
Since tasks provide each other services through rendezvous, this
definition may also be phrased as task A is waiting for a rendez-
vous with task B and task B is waiting for a rendezvous with task
A. A classification of the Ada constructions that can generate
cyclical waiting deadlocks is provided by [LEV89]. Two of the
important forms of cyclic waiting deadlock are cyclical entry
calling and call/wait. In cyclic calling deadlocks, a circular
pattern of entry calls is made (A calls B and waits while B calls
A and waits). In call/wait deadlocks, A calls an entry in B,
B.BI, while B waits for A to call a different entry, B.B2. The
call/wait deadlock occurs only if A is the only task that calls
B.B2. Either type of deadlock may be direct or indirect.

Both direct and indirect cyclic entry calling are visible in a
directed graph representation of the calling relationships among
tasks. Call/wait deadlock can occur in any directed acyclic
graph of a calling relationship containing at least two paths to
one node. Each call made by task A on a different entry of task
B constitutes a path in the calling relationship graph.

The following situation illustrates an indirect call/wait dead-
lock. Task B contains two entries, Bl and B2, in a selective
wait. At the time of deadlock, a guard on Bl is closed, so B is
waiting on a call to B2. Task A, which has one unguarded entry

A-36

Ada Reusability Handbook Real-Time Requirements Annex

Al, is waiting after a call to B.Bl. Task C contains calls on
B.B2 (which will reset the guard so that task A's call to B.Bl
can complete) and on A.Al. If C calls A.Al before calling B.B2,
then A waits on B, B waits on C, and C waits on A. This deadlock
does not appear as a cycle in a calling graph, but does appear as
two paths to B (AB and CB) in a graph of calling relations among
the three tasks.

It is always possible to implement a calling graph containing
cycles or multiple paths to one node so that it contains poten-
tial cyclic waiting deadlocks. Therefore, if the graph of the
calling relationships in an application exhibits the characteris-
tic of showing cycles or having multiple paths to one node, that
application must be examined for potential deadlocks.

The easiest way to prevent cyclic task waiting is to organize all
task calls into a strict tree hierarchy. Since networks of
transactions normally appear in designs, this method is usually
too restrictive. In particular, a strict tree hierarchy allows
only one task to call a task that manages a resource.

The risk of deadlock caused by cyclic waiting can be reduced by
four viable strategies:

1. Convert cyclic calling relationship graphs to hierar-
chical calling relationship graphs.

2. Establish safe protocols.
3. Establish communication between tasks using well under-

stood buffer and transporter tasking idioms.
4. Examine each cycle for deadlock conditions.

The entire class of circular entry call deadlocks is eliminated
by removing cycles from calling relation graphs. This can o.ften
be done by changing the direction of an entry call. The follow-
ing two tasks have a cycle in their calling relationship:

task A is
entry GiveMeA(Item : in TBD.DataType);

end A;

task B is
entry Give_MeA(Item : in TBD.DataType);

end B;

task body A is
LocalItem : TBD.DataType;

begin
loop
B.GiveMeA(Item);
accept Give MeA(Item : in TBD.DataType) do

Local Item := Item;
end GiveMeA;
Consume(Local_Item);

A-37

Real-Time Requirements Annex Ada Reusability Handbook

end loop;
end A;

task body B is
LocalItem : TBD.DataTyne;

begin
loop

accept Give Me A (Item : in TBD.DataType) do
Local Item := Item;

end GiveMeA;
Transform (LocalItem);
A.GiveMe A(Local_Item);

end loop;
end B;

As shown below, changing the direction of one call so that A
calls B twice eliminates the cycle in the calling relationship.

task A;

task B is
entry Give Me A(Item : in TBD.Data_Type);
entry HereIsA(Item : out TBD.DataType);

end B;

task body A is
LocalItem : TBD.DataType;

begin
loop
B.GiveMeA (Item);
B.HereIsA (Local_Ittm);
Consume(LocalItem);

end loop;
end A;

task body B is
LocalItem : TBD.DataType;

begin
loop
accept GiveMeA(Item : in TBD.DataType) do

Local Item := Item;
end GiveMeA;
Transform (LocalItem);
accept HereIsA (Item : out TBD.DataType) do

Item := Local Item;
end Here Is A;

end loop;
end B;

A-38

Ada Reusability Handbook Real-Time Requirements Annex

Although this transformation removes the possibility of cyclic
entry calling, task B could still participate in a call/wait
deadlock which would occur if task A called the same entry in
task B twice in succession or if A initially called B.Here Is A.
The possibility of call/wait deadlock can be eliminated by using
protocols for safe task interaction. A protocol is a specified
pattern of interaction between tasks. For example, tasks A and B
in both examples immediately above avoid deadlock by using safe
protocols. In the first example, they strictly alternate calls
and accepts. In the second example, they order the calls in A
and the accepts in B identically. These protocols are very
restrictive.

A more generally useful protocol for communication between two
tasks is the safe entry calling sequence protocol. Discussion of
this protocol is derived from [CEC84]. The protocol requires
that for a given sequence of entry calls, an accept statement be
reached for a given entry call whenever an accept statement is
reached for a previous entry. This ensures that a later entry
call will not be permanently blocked by a server waiting at an
accept statement for a previously issued entry call. Given a se-
quence of entry calls made by an actor task, determinating
whether the calls are safe depends entirely on the construction
of the server.

The examples below illustrate both safe and unsafe calling se-
quences with a model using an active controller task that calls a
server task. Since the safety of the calling sequence depends
entirely on the server, only the server is changed to convert an
unsafe calling sequence into a safe one.

The controller task passes composite data to the server. The
server task processes the components of the composite data and,
after processing each component, checks to determine if new data
have arrived. If they have, then the server task stops process-
ing the current composite data and accepts delivery of new com-
posite data; otherwise, it continues processing the current data
until processing is complete. After an initial delivery of data
to the server, the controller task alternates between announcing
to the server task that it should accept new data and passing new
data to the server task.

with TBD;
procedure Shell is

function TheData return TBD.CompositeType is separate;
task Server is
entry New DataReady;
entry Deliver(Data : in TBD.CompositeType);

end Server;
task body Server is separate;
task Controller is
entry Take(TheData : in TBD.CompositeType);

end Controller;

A-39

Real-Time Requirements Annex Ada Reusability Handbook

task body Controller is
NewData : TBD.CompositeType;

begin
-- Provide Server with initial data delivery
accept Take (TheData : in TBD.CompositeType) do

New Data := TheData;
end Take;
Server.Deliver(NewData);
loop
accept Take(TheData : in TBD.CompositeType) do

New Data := The Data;
end Take;
Server.NewDataReady;
Server. Deliver (NewData);

end loop;
end Controller;

begin -- Shell
loop
Controller.Take(The_Data);

end loop;
end Shell;

The sequence of entry calls generated by Controller is

Server. Deliver
Server.NewDataReady
Server. Deliver
Server.NewDataReady

which contains the two subsequences

Server. Deliver
Server.NewDataReady

and

Server.NewDataReady
Server. Deliver.

A server body that does not process these subsequences of entry
calls safely is shown below.

separate(Shell)
task body Server is

-- Unsafe server
The Data : TBD.CompositeType;
-- This processing is irrelevant to the safe entry
-- considerations
procedure Process (TheComponent : in TBD.DataType) is

separate;
begin

A-40

Ada Reusability Handbook Real-Time Requirements Annex

loop
accept Deliver (Data : in TBD.CompositeType) do
TheData := Data;

end Deliver;
for I in The Data'Range loop
Process (TheData(I));
select

accept NewDataReady;
exit;

else
null;

end select;
end loop; -- through DataElements

end loop;
end Server;

In the body of the unsafe Server, the first subsequence of calls,
Server.Deliver followed by Server.NewDataReady is not safe be-
cause the entry Server.NewData Ready may not be reached after a
call to Server.Deliver. This will happen if Server finishes
processing one delivery of data before a new delivery is ready.
In this case Controller will wait for Server at NewData_Ready
and Server will wait for controller at Deliver. On the other
hand, the sequence of calls Server.NewDataReady, Server.Deliver
is safe because an accept for Deliver is always reached after an
accept of NewDataReady. To make the entry calling sequence
safe, the body of Server can be modified as shown below.

separate(Shell)
task body Server is
-- Safe server

SignalAccepted : Boolean; -- initialized in main loop
The Data : TBD.CompositeType;
procedure Process (The_Component : in TBD.DataType) is

separate;
begin

loop
Signal Accepted := False;
accept Deliver (Data : TBD.CompositeType) do

The Data := Data;
end Deliver;

for I in TheData'Range loop
Process (The_Data(I));
select
accept NewDataReady;
SignalAccepted := True;
exit;

else
null;

end select;
end loop; -- through DataElements

A-41

Real-Time Requirements Annex Ada Reusability Handbook

if not Signal Accepted then
accept NewDataReady;

end if;
end loop;

end Server;

The safe entry sequence protocol can be used to construct
reusable components by defining the expected calling sequences
for the component's entries and then ensuring that the component
will behave safely for those sequences.

Another safe protocol, the priority ceiling protocol, is being
developed by The Software Engineering Institute as a real-time
scheduling method for Ada. This protocol implements the rate-
monotonic scheduling algorithm. A by-product of this scheduling
algorithm is that a set of tasks constructed to meet the require-
ments of the priority ceiling protocol executes free from dead-
lock. Details of the protocol are provided in [CMUSEI] and
[ACM88]. The technical details of the priority ceiling protocol
extend well beyond guidelines for writing individual components.
For example, successful implementation of the protocol may re-
quire modification to Ada runtime executives.

Using standard buffer and transporter idioms as described in
[BUH84] and [SHU88] reduces deadlock risk in two ways. First,
the idioms remove cycles from graphs of calling relations.
Second, the idioms provide protocols that avoid potential for
call/wait deadlocks that remains once cycles have been removed
from the calling relationship graph. These idioms provide a
well-understood method of constructing deadlock-free networks of
communicating tasks.

Any design in which the graph of the task calling relations is
not a strict tree and which does not use known safe protocols or
safe buffer/transporter task communication idioms must be checked
for potential deadlocks. Classification of forms of deadlock and
methods of altering code to remove potential deadlock situations
are presented in [LEV89] and (CHE88]. These references serve as
a guide to Ada constructions to be avoided.

3.1.2.1.2 Resource Contention Deadlocks

Resource contention is a form of cyclic waiting in which each
task in the deadlock is waiting for a resource controlled by
another task in the deadlock. For example, Task A controls
resource X and requests resource Y while task B requests resource
X and controls resource Y. Four conditions are necessary for
resource deadlock to occur:

1. Mutual Exclusion - Tasks must have exclusive access to
a resource.

A-42

Ada Reusability Handbook Real-Time Requirements Annex

2. Serial Acquisition - Tasks must be able to acquire new
resources while holding exclusive access to resources.

3. Non Pre-emption - Tasks holding resources cannot have
the resources they control taken away from them.

4. Circular Wait - A cycle must exist in the graph of
resource requests and resource grants.

Resource contention deadlock can be prevented by ensuring that at
least one of the four conditions for resource contention deadlock
is not met. Operating systems literature contains extensive dis-
cussion of deadlock avoidance strategies based on preventing the
occurrence of each of these conditions. However, many of the ap-
proaches deal with overall program design rather than with the
construction of reusable components. Therefore, only a brief
summary of the approaches is provided.

Mutual exclusion can be prevented only when the nature of the
resource allows shared access. For example, disks can be shared,
but memory pages in a paged memory system cannot. The choice of
preventing deadlock by sharing resources is largely beyond the
programmer's control. At best the programmer can avoid managing
sharable resources with mutual exclusion.

Strategies for preventing serial acquisition of a class of iden-
tical resources are most applicable to building reusable com-
ponents. Serial acquisition may be prevented if a task can
determine in advance the amount of a resource it will use and the
resource manager can provide these resources in a block. When
the task requests resources, it receives either all the resources
it needs or none of them. In either case the requesting task can
continue. For example, a task that allocates buffers to a re-
questing program can be implemented so that it allocates buffers
one at a time or in blocks. The latter implementation, combined
with a disciplined use of the component in which tasks request
all the buffers they will need at once, prevents deadlocks over
buffer resources. Although this approach often works well for
one class of resource, it has limited utility when it is general-
ized to a task requesting all resources it needs from all classes
of resources at once. The requirement that a task request all
its resources at once may prevent the task from ever executing,
although it could execute if it acquired and released resources
piecemeal. In addition, the all or nothing approach may lead to
inefficient use of resources if a task acquires resources at the
beginning of a processing cycle that are not used until the end
of that cycle.

Non pre-emption can be prevented by writing resource users that
pre-empt themselves; that is, they give up resources they control
if they cannot obtain resources they need to continue. Although
this approach prevents deadlock, self pre-emptive tasks are sub-
ject to conditions in which competing tasks never acquire all the
resources they need to continue (busy resource contention).

A-43

Real-Time Requirements Annex Ada Reusability Handbook

Circular waiting can be prevented by at least two strategies.
The first is to divide the resources in a system into classes of
identical resources. Each class is then numbered. If all tasks
acquire resources within a class in blocks rather than serially,
and they acquire resources from different classes in ascending
numerical order, then deadlock is prevented. Some task always
has control of the resources it needs at the highest resource
number allocated. This task can always execute and eventually
release the resources. This strategy can be adopted only when it
is reasonable for all processes to acquire their resources in the
same order. The second strategy for preventing circular waiting
is for a resource request manager to maintain a graph of resource
requests and grants and refuse to accept any resource requests
that will create a cycle in the graph. This strategy typically
has a high overhead for managing the resource requests and main-
taining and querying the graph.

3.1.2.2. Starvation

Starvation is a condition in which one or more tasks are blocked
indefinitely from making progress, but a program continuation may
eventually allow the blocked tasks to continue. Starvation
resulting from low priority tasks being blocked from execution by
high priority tasks is a problem in predictable task scheduling.
Task scheduling is dealt with in Section 2 of this annex. In
many cases, starvation of a low priority task may be the expected
outcome of scheduling decisions made in response to external con-
ditions.

An example of inappropriate task starvation is an actor calling a
server when the guard on the server entry is inappropriately
closed. The calling task is blocked until the closed guard is
opened. A common situation leading to inappropriately closed
guards arises when a caller times out while attempting a timed
entry call to an entry whose guard employs the count attribute.
Consider the case (taken from [BAR84]) of a task that controls
access to a variable. The specification of the task requires
that the package allow multiple readers but only one writer. In
addition, writers are to have priority over readers; that is, as
soon as a write entry call is made, no read entry calls are to be
accepted. The following select statement is at the heart of the
controlling task (updates to the protected variable occur outside
the controlling task):

loop
select
when Write'Count = 0 =>

accept StartRead;
Readers := Readers + 1;

or accept StopRead;
Readers := Readers - 1;

or when Readers = 0 =>
accept Write;

A-44

Ada Reusability Handbook Real-Time Requirements Annex

end select;
end loop;

Suppose that the select statement evaluates the guards when a
writer is queued on the write entry and a context switch occurs
before the write entry is accepted. Further, suppose the writer
times out before the protection task resumes execution and is
removed from the entry queue for Write. If Readers = 0,
StartRead cannot be accepted because the guard is closed, and
StopRead will not be called because all readers have finished.
Therefore, reading tasks will be blocked until a writer calls the
open entry for write. If Readers > 0, then reading tasks are
blocked at the StartRead entry until some reader calls
StopRead. In either case, reader tasks are starved.

A strategy that avoids the starvation problem is for the control-
ling task to maintain its own counts of readers and writers and
to provide a means for writers to decrement the writer count if
they time out. The following control loop implements this
strategy.

loop
select
when Writers = 0 =>

accept Start (S : Service) do
case S is
when Read => Readers Readers + 1;
when Write => Writers Writers + 1;

end case;
end Start;

or
accept StopRead;
Readers := Readers - 1;

or
when Readers = 0 =>
accept Write;

or
accept StopWrite;
Writers := 0;

end select;
end loop;

To use this control loop correctly, writers that time out must
use a specific protocol to call the controlling task entries.
Shown below is the procedure Write, which enforces the required
protocol. When the procedure calls Start, it either times out
and has no effect on the writer count or the call is accepted and
proceeds to call Write. If the procedure times out after calling
the Write entry, it decrements the writer count and again leaves
the controlling task in a consistent state.

A-45

Real-Time Requirements Annex Ada Reusability Handbook

procedure Write (X : in Item;
T: in Duration;
OK : out Boolean) is

StartTime : Calendar.Time Clock;

begin -- Write

select
Control. Start(Write);

or
Delay T;
OK := false;
return;

end select;
select
Control.Write;

or
delay T - (Clock - Start Time);
Control.StopWrite;
OK := false;
return;

end select;
-- update the variable X
Control.StopWrite;
OK := true;

end Write;

Two additional variations on this readers/writers problem that
provide additional safety measures are presented in Section 3.2
on Fault Tolerance.

3.1.2.3. Thrashing

In the following example of thrashing, conditional select state-
ments are used on both sides of the rendezvous with entry B.B1.

task body A is
begin

loop
-- Conditional entry call
select

B.BI;
else

-- Do some processing
end select;

end loop;
end A;

task body B is
begin

loop

A-46

Ada Reusability Handbook Real-Time Requirements Annex

-- Conditional selective wait
select

accept B1;
else

-- Do some processing
end select;

end loop;
end B;

Unless task A reaches its call to B.Bl at the same time that task
B reaches its select statement for B.Bl, the two tasks will never
rendezvous. In general, the use of timed or conditional selects
on both c !ling and called sides of a given entry should be
avoided to prevent this type of synchronization proilem.

Guidelines for Reliable Transactions follow.

Composition OrthoQonality Guideline 3.1-1: Make tasks in
reusable real-time components available as task types or through
instantiation of a generic package.

Discussion: If a component provides task objects and is used in
the construction of more than one larger component, sharing the
task may produce unexpected task interactions leading to dead-
lock.

Composition OrthoQonality Guideline 3.1-2: If possible, organize
the task calling relationships in a composite component in a
strict tree hierarchy.

Discussion: This organization guarantees that the task interac-
tions in the composite component will not cause cyclic waiting
deadlock.

Readability Guideline 3.1-3: Use known safe protocols or well
understood buffer/transporter tasking idioms to establish com-
munication between tasks.

Discussion: The potential for producing deadlocks is higher when
using ad hoc designs or allowing cycles in the graph of task
calling relations. Buffer/transporter communication idioms
remove cycles from task calling relations.

Readability Guideline 3.1-4: If a component is designed to be
used with a particular safe entry call sequence, document this
sequence in the component specification.

Discussion: This documentation is required for the correct use
of the component.

A-47

Real-Time Requirements Annex Ada Reusability Handbook

Composition Orthogonality Guideline 3.1-5: The design of a
resource manager that manages all instances of some class of
resources should, if possible, provide multiple instances of the
managed resource as a block rather than requiring the user
programs to acquire the resources one at a time.

Discussion: This method of allocating resources allows use of a
programming discipline that will prevent contention deadlock for
the given class of resources.

Composition Orthoqonality Guideline 3.1-6: Avoid using the at-
tribute Count in guards of selective wait statements of com-
ponents.

Discussion: Use of the attribute Count in guards is unreliable
if calling tasks time-out or are aborted.

Composition Orthoponality Guideline 3.1-7: If timed entry calls
are used with a component that requires use of an entry call
protocol to maintain a consistent state, encapsulate the protocol
in a procedural interface.

Discussion: Encapsulating the calls to the task entries in a
procedure prevents the user from violating the protocols that
maintain consistent state information in the server task.

Readability Guideline 3.1-8: If a component performs a condi-
tional or timed accept, indicate this fact in the component
specification.

Discussion: A user of the component may never successfully ren-
dezvous with the component if it calls an entry with conditional
or timed calls when the entry performs a conditional or timed ac-
cept.

3.2. Fault Tolerance

Fault tolerance is a system's capability to provide service
despite the faults in one or more hardware or software system
components that produce failures. Component faults may be
manifested as failure to provide service (e.g., a processor dies)
or as provision of erroneous results to other system components
(e.g., an implementation of an algorithm produces incorrect
results for some set of values).

Providing fault tolerance always imposes the costs of additional
processing time, additional hardware, or both. Choosing a
system's level of fault tolerance and the method(s) of providing
it is a system design issue. Software can play such diverse
roles in implementing fault tolerant platforms as managing
hardware to provide tolerance of physical component faults (e.g.,
SIFT, the Software Implemented Fault Tolerant computer [WEN78]),

A-48

Ada Reusability Handbook Real-Time Requirements Annex

or managing process rollback and recovery as a meanct "- '-erat-
ing transient faults. This section, however, tak._ ne fault-
tolerant platform as given. A particular fault-tolerant platform
may impose specific constraints on components (e.g., the SIFT
computer's executive imposed a specific scheduling alqoritnm on
avionics applications written for it), but there i no generality
to the constraints imposed (or resources provided) by various
fault tolerant platforms. The focus here, therefore, is on
general principles for creating application level reusable com-
ponents that are tolerant of software faults.

At least two aspects of real-time reusable component design are
directly related to providing tolerance of software faults:

1. Guarding against effects of task failure.
2. Detecting and correcting erroneous computations.

Both aspects of design for fault tolerance attempt to localize
the effect of software faults. Components designed to guard
against task failure are not disrupted by failure of tasks with
which they are interacting. Components that are designed to
detect and correct their own erroneous computations prevent er-
rors from propagating out of the component.

Distributed Ada programs are Ada main programs that execute on
more than one processor. Environments that do not provide
transparent fault tolerance for processor failures require dis-
tributed Ada programs to manage the process of graceful degrada-
tion if one or more of the processors over which the Ada program
is distributed fail. This section discusses problems of the
semantics of processor failure in such environments.

3.2.1. Tolerance of Task Failure

As discussed in Section 3.1.1 above, real-time components are
characterized as containing tasks. The distinctive failure mode
of real-time components is the failure of a task in the com-
ponent. Task failure is defined as a task's becoming unexpec-
tedly abnormal, completed, or terminated. Other component
failure modes, such as the propagating of unexpected exceptions
by the component, are shared with sequential components and are
not dealt with here. An exception being raised during the
processing of an accept statement and being propagated into both
the calling task and the called task is not considered task
failure. Such an exception may lead to task failure if the
called task does not handle the exception raised during the ac-
cept statement processing. The effects of a task failure are
defined in the Ada language, and designing to minimize the effect
of such failure is the same whether an Ada program is distributed
or is executing on one processor.

A-49

Real-Time Requirements Annex Ada Reusabiiity Handbook

For a calling task, the failure of a server task is manifested as
the exception TaskingError being raised in the calling task at
the place of the call [RM 11.5(2)(5)]. This exception must be
handled if the calling task is not to terminate. A calling task
has two options for handling TaskingError: to proceed without
the services of the called task or to arrange for the replacement
of the called task. Since the choice of options is application-
specific, little general guidance is available for calling tasks.

For a called task, the failure of a calling task results in
either the entry call's being removed from the queue if rendez-
vous has not yet occurred or the rendezvous' being completed nor-
mally [RM 11.5(6)]. Thus there is no immediate indication that a
caller has died. However, it is possible that a calling task
must complete a sequence of entry calls to leave a server task in
a consistent state. Consistency for a task state may be either
internal consistency or consistency with the task's environment.
If the calling task can fail without completing the required se-
quence of entry calls, the called task must guard against being
left in an inconsistent state by this failure.

An example of a task that can be left in a state inconsistent
with its environment is a monitor task that provides control over
the readers and writers of some data structure. Typically, such
a task allows multiple concurrent readers but only one concurrent
writer, with writers having priority over readers. Such a task
may have a state that keeps track of the number of readers to
determine when writing is allowed. The following Control task
taken from [BAR84] performs this function. The Control task is
hidden in a package body whose visible interface consists of the
procedures Read and Write.

package body Readers_Writers is

V : Item;

task body Control is
Readers : Integer := 0;

begin
loop

select
accept Start (S : Service) do

case S is
when Read =>

Readers := Readers + 1;
when Write =>

while Readers > 0 loop
accept Stop; -- from readers
Readers := Readers - 1;

end loop;
end case;

end Start;

A-50

Ada Reusability Handbook Real-Time Requirements Annex

if Readers = 0 then
accept Stop; -- from the writer

end if;
or

accept Stop; -- from a reader
Readers := Readers - 1;

end select;
end loop;

end Control;

procedure Read (X : out Item) is
begin

Control.Start(Read);
X := V;
Control.Stop;

end Read;

procedure Write (X : in Item) is
begin

Control.Start(Write);
V := X;
Control.Stop;

end Write;

end ReadersWriter;

If a reader is ever aborted after calling Control.Start but
before calling Control.Stop, the count of readers will never
reach 0, and the state of the task (i.e., the reader count) be-
comes inconsistent with the actual number of readers in the
task's environment. This inconsistency in turn prevents any
writes, and, after Start is called by a writer, also prevents any
new reads from starting. If a writer is aborted, then the Con-
trol task hangs at the accept statement that accepts Stop entry
calls from writers Lnd never accepts new readers or writers.
Therefore, if a reader or writer could be aborted, the Control
task must guard against reader or writer failure.

A way to guard the Control task against reader or writer failure
is to employ an agent task to perform the reads or writes. Since
the agent task type is declared in the package body, the agent is
invisible and cannot be aborted. A package body using the writer
agent is shown below. The reader agent would be similar.

package body Readers_Writers is

V : Item;

task type WriterAgent is
entry Write (X : in Item);

end Writer Agent;

type WriterPtr is access Writer-Agent;

A-51

Real-Time Requirements Annex Ada Reusability Handbook

task body Control is
-- as before

end Control;

task body WriterAgent is
begin

select
accept Write (X : in Item) Qo
Control.Start (Write);
V := X;
Control.Stop;

end Write;
or

terminate;
end select;

end Writer-Agent;

procedure Write (X : in Item) is
WA : WriterPtr new Writer-Agent;

begin
WA. Write (X) ;

end Write;

procedure Read (X out Item) is

end Read;

end ReadersWriter;

Note that the writer agent is created by an allocator. If it was
declared directly as a task object, such as

procedure Write (X : in Item) is
WA : Write.: N\.ent;

begin

end Write;

then the Writer Agent would be dependent on the task calling the
Write procedure and would be aborted if the task calling Write
were aborted. Creation of the.agent task with an allocator makes
it dependent not on the calling task but on either the package
ReadersWriters, if ReadersWriters is a library unit, or on the
subprogram or block where ReadersWriters is declared, if
ReadersWriters is declared inside another compilation unit [RM
9.4(1-3)].

3.2.2. Tolerance of Software Design Flaws

Hardware faults can be masked by using redundant hardware. The
redundant hardware can be configured for use as spares that are
swapped in when faults are detected or for simultaneous use as in

A-52

Ada Reusability Handbook Real-Time Requirements Annex

the triple modular redundancy (TMR) approach. Unlike hardware,
which can physically deteriorate, software malfunctions only if
it contains a design tlaw. Approaches similar to those used for
masking hardware faults can be used to mask faults resulting from
undetected software design flaws in fielded systems. The
recovery block approach is similar to the use of hardware spares
that are swapped in when faults are detected [RAN75]. N-version
programming is similar to the TMR approach (AV185]. Both ap-
proaches require multiple implementations of the functionality
provided by the computation. They differ in the error-detecting
algorithm and in how the execution of the redundant implementa-
tions is sequenced. The recovery block uses an application
specific test for correctness of execution and executes versions
sequentially. The n- version approach executes versions simul-
taneously and uses a voting algorithm to compare the results of
multiple computations, as does the TMR approach to hardware
redundancy.

Many variations on the methods for using software redundancy can
be created. For example, two computations can be compared; if
they disagree, an acceptance test can be applied to determine the
correct result. Recovery blocks and n-version programming were
chosen to illustrate the use of software redundancy because sig-
nificant research has been performed with both forms.

Recovery blocks and n-version programming both depend on the as-
sumption that different designs and implementations of the same
specification have independent, and therefore different, design
faults. Producing multiple versions under conditions that bias
the designers and implementers towards creating versions with the
same faults destroys the safety margin gained by using multiple
versions. Conditions required for achieving independence of
design faults is a research topic being pursued at the University
of California at Los Angeles [AV184]. One crucial condition is
that specifications be of high quality. If a specification con-
tains flaws, then all designs and implementations based on that
specification are biased towards making the
same errors. Other conditions for achieving independence of
design faults are discussed in [AV184]. The successful applica-
tion of any fault tolerance method using multiple versions of
software requires adherence to the conditions for achieving inde-
pendence of design faults during the productiin of multiple ver-
sions.

3.2.2.1. Recovery Blocks

The basic concept of the recovery block is that the results of a
computation are tested and, if the test fails, an alternate im-
plementation of the computation is invoked. If all alternates
fail the test, an error signal is returned. A recovery block for
performing a sort is shown in pseudo-code form below. DS is the
data structure on which the sort is performed:

A-53

Real-Time Requirements Annex Ada Reusability Handbook

ensure Sorted(DS) and (Sum (DS) = Sum (Prior(DS)) -- Not Ada
by Quicksort(DS);
else by Mediumsort (DS);
else by Sluggishsort (DS);
else Error;

end ensure;

Here the acceptance test of the sort is that the elements of DS
are in sorted order and that the sum of the elements before the
sort equals the sum of the elements after the sort. If for some
DS the Quicksort fails, then Mediumsort is automatically invoked
on the original version of DS. If all alternatives fail, Error
is returned. Implementation of a recovery block requires that
the state of the system before the invocation of the first alter-
native be available for use by later alternatives (and possibly
for use by the acceptance tests). A recovery block cannot alter
the system state until the recovery block verifies that a suc-
cessful computation has been performed. The recovery block ap-
proach to fault tolerance also assumes that the acceptance tests
for judging the result of a computation are correct.

These requirements could be met by the following Ada construction
(the functions Sorted and Sum are assumed to be correct):

with TBD;
package Safesort is

Sort Failed : exception;
procedure Sort (Item : in out TBD.DataType);

end Safesort;

package body Safesort is

-- Three alternate implementations of the computation
-- functionality
function QuickSort (Item : TBD.Data_Type)
return TBD.Data Type is separate;

function MediumSort (Item : TBD.DataType)
return TBD.Data Type is separate;

function SluggishSort (Item : TBD.DataType)
return TBD.DataType is separate;

-- Functions performing the application specific
-- acceptance tests
function Sorted (Item : TBD.DataType) return Boolean is

separate;
function Sum (Item : TBD.DataType) return Integer is

separate;

-- The recovery block which masks design errors in
-- up to two alternative computations
procedure Sort (Item : in out TBD.Data Type) is

-- Note that the initial state, the in out parameter
-- Item, is not altered until the final statement

A-54

Ada Reusability Handbook Real-Time Requirements Annex

-- in Sort.
Result : TBD.DataType;
type Alternatives is (Quick, Medium, Sluggish);
Alternative : Alternatives;

begin -- Sort

for Alternative in Alternatives loop
case Alternative is
when Quick =>

Result := Quicksort(Item);
when Medium =>
Result := Mediumsort(Item);

when Sluggish =>
Result SluggishSort (Item);

end case;
ResultOK Sorted (Result) and

(Sum (Item) = Sum (Result));
exit when ResultOK;

end loop;
if Result OK then
Item := Result;

else
raise SortFailed;

end if;
end Sort;

end Safesort;

Note that the initial context is saved and not altered unless a
successful sort is performed.

An advantage of the recovery block over n-version programming is
that it can recover from errors in n - 1 out of n alternatives.
N-version programming using a majority vote decision algorithm
can recover from errors in only n/2 - 1 versions. Thus, recovery
block provides greater fault tolerance for the same number of
versions.

An obvious problem with using the recovery block form for a
real-time component is that the worst case execution time is ap-
proximately n times worse than best case execution time, where n
is the number of alternatives provided. Even the best case ex-
ecution time always incurs the added overhead of the
application-specific acceptance test. These overheads may
prevent use of the recovery block format where tight timing re-
quirements exist. The recovery block format may be more useful
where fault tolerance is important in code that is not time-
critical. Another problem with recovery blocks is that they have
no means of recovering from errors in the acceptance tests.

A-55

Real-Time Requirements Annex Ada Reusability Handbook

3.2.2.2. N-Version Programming

The basic concept of n-version programming is to execute multiple
versions of a required computation and vote on the results simul-
taneously. Thus, an Ada program that implements the n-version
approach to tolerating design faults must be distributed. The
most desirable distribution is a processor per version, although
acceptable performance may be achieved if execution times of dif-
ferent versions vary significantly and faster versions are
grouped together on one processor. The following example shows
the n-version form of the safe sort.

with TBD;
use TBD; -- to gain visibility to operators

package body Nsort is
task Quick is
entry Sort (Item : in TBD.Data Type);
entry Result (Q_Result : out TBD.DataType);

end Quick;
task body Quick is separate;

task Medium is
entry Sort (Item : in TBD.DataType);
entry Result (MResult : out TBD.DataType);

end Medium;
task body Medium is separate;

task Sluggish is
entry Sort (Item : TBD.Data Type);
entry Result (S_Result : out TBD.Data_Type);

end Sluggish;
task body Sluggish is separate;

procedure Sort (Item : in out TBD.Data Type) is
Initial Value : TBD.DataType := Item;
Q_Result, MResult, SResult : TBD.Data_Type;

begin -- Sort
-- Start concurrent sorts; tasks are distributed
-- over multiple processors
Quick.Sort(Initial Value);
Medium.Sort(Initial Value);
Sluggish.Sort(InitialValue);

-- Obtain results
Quick.Result(Q_Result);
Medium.Result(MResult);
Sluggish. Result(S_Result);

-- Vote on outcomes
if QResult = MResult then

Item := QResult;

A-56

Ada Reusability Handbook Real-Time Requirements Annex

elsif Q_Result = SResult then
Item := Q Result;

elsif MResult = SResult then
Item := M Result;

else -- no majority
raise SortFailed;

end if;
end Sort;

end Nsort;

Separate successful algorithms can calculate different values
that differ by an acceptable range. In that case, the simple
test for equality used in the example must be replaced by a test
that determines whether the difference in results falls within
the acceptable range.

The most important advantage of the n-version form of software
fault tolerance is that the execution time of a fully distributed
version never exceeds the time for the slowest version plus
voting. N-version programming has several additional advantages.
The simple majority vote decision algorithm may often be faster
(and less likely to contain errors) than the application-specific
acceptance tests used by recovery blocks. The work of developing
the acceptance tests for each recovery block is eliminated, since
essentially the same algorithm is used for all correctness deci-
sions.

The n-version fault tolerance form illustrated above will execute
on a uniprocessor system; however, since all versions are ex-
ecuted each time the sort is called, its performance is consis-
tently worse on a uniprocessor than is the performance of the
recovery block version.

Unfortunately, implementing n-version fault tolerance inside the
Ada language requires a development system that allows specifica-
tion of the distribution of tasks in an Ada program onto the
processors of a target. Because such development systems are not
yet commercially available as of 1989, n-version programming can
be used on a distributed architecture with current Ada implemen-
tations only by stepping outside the Ada language and treating
each alternate version as a separate main program.

3.2.3. Semantics of Failure in Distributed Ada Programs

A distributed Ada program is one main program executing on mul-
tiple processors. The alternative to distributing Ada programs
is designing a distributed application as a group of Ada main
programs communicating by facilities not defined by the language.
A significant advantage of distributed Ada programs over com-
municating main programs is that a compiler can check the consis-
tency of the entire distributed application. An application con-
sisting of communicating main programs differs significantly in
expressing the method of communication between main programs and

A-57

Real-Time Requirements Annex Ada Reusability Handbook

between local tasks within a main program. Communications in a
distributed application are all expressed with the same language
constructs. This gives an advantage to distributed programs
during maintenance, because the location of tasks is transparent
to distributed Ada programs. If the distribution of tasks in the
application is reconfigured so that local tasks become remote (or
vice versa), the distributed application does not require main-
tenance changes to account for the changed method of communica-
tion. Using the same language construct for all task communica-
tion also eases the task of reconfiguring a distributed applica-
tion after processor failure, since resurrecting a failed task on
another processor does not change how it communicates with other
tasks.

Although the Ada language allows programs to be distributed [RM
9(5)], it does not define the units of distribution or define the
semantics of failure for a distributed program. The semantics of
failure for a distributed Ada program define the effect of
processor failure on the portions of the distributed program ex-
ecuting on the surviving processors. The effects of failure can
be broadly divided into two categories: effects on task com-
munication and effects on task contexts (KNI87].

The case of a task engaged in a rendezvous with a task running on
another piocessor that has failed illustrates the lack of defini-
tion of failure semantics in Ada. The task on the failed proces-
sor is not in a state that is recognized by the language; it is
neither elaborated, activated, completed, terminated, or ab- nor-
mal. Either of two alternatives is a possible response for a
task communication with a task on a failed processor: the calling
task could remain in the rendezvous forever or could have
Tasking-Error raised at the point of call.

A task referencing a global variable on another processor that
has failed illustrates the problem of undefined failure semantics
for task contexts.

One approach to eliminating the problem of undefined failure
semantics is to design a distributed architecture for extreme
physical hardware fault tolerance. The assumption is that the
distributed nodes and their communication channels will not fail.
This approach is viable for protecting some nodes that perform
critical functions, but probably not for the entire distributed
target. The space and power requirements of providing physical
fault tolerance for all nodes and communication links in a dis-
tributed network defeat the reasons for using distributed
processing in the first place, such as reducing cabling require-
ments by localizing processing of sensors and actuators.

The effects of processor failure may be partially controlled by
managing the units of distribution of an Ada program. The vir-
tual node unit of distribution discussed in Section 1.1 defines
the distributed units so that they never share global data. Such

A-58

Ada Reusability Handbook Real-Time Requirements Annex

definition of distribution units increases the fault tolerance of
the distributed Ada program by reducing the possible effects of
processor failure. In general, the problems produced by the ef-
fects of processor failure on task context can be mitigated by
defining units of distribution that minimize shared context. The
effects of processor failure on task communication between nodes
cannot.

Implementers of development systems that allow distribution must
either define and implement a semantics of failure or suffer the
consequences of undefined program behavior. The second alterna-
tive is clearly unacceptable for a production-quality system. A
variety of failure semantics has been proposed from which im-
plementers can choose [ACM88].

The issues of the semantics of distributed Ada are being examined
by the Ada 9X review process. It is recommended that developers
designing distributed programs closely monitor the Ada 9X review
process to determine what (if any) semantics for distributed Ada
programs will be added to the language.

Guidelines for Fault Tolerance follow.

Composition Orthogonality Guideline 3.2-1: Use agent tasks that
are not dependent on a calling task to carry out sequences of
entry calls required to maintain an internally consistent state
in the called task.

Discussion: This technique ensures that the state of the called
task remains consistent if the calling task fails during a se-
quence of required entry calls.

Efficiency Guideline 3.2-2: If designing components to be
tolerant of residual software design faults for a uniprocessor
system, consider using the recovery block model.

Discussion: The best case execution time of the recovery block
model on a uniprocessor system is significantly better than the
n-version model.

RTS Dependency Guideline 3.2-3: If your runtime supports task
distribution, consider the n-version programming model for build-
ing components that tolerate software design faults with predict-
able execution times.

Discussion: The execution time of the n-version model is pre-
dictable; the execution time of the recovery block model is de-
pendent on whether residual faults are encountered.

Composition Orthogonalitv Guideline 3.2-4: Use units of dis-
tribution for distributed Ada programs that minimize the context
shared between units on different processors.

A-59

Real-Time Requirements Annex Ada Reusability Handbook

Discussion: This technique minimizes the effects of processor
failure on remaining software to effects on task communication.

3.3. Asynchronous Transfer of Control

Asynchronous transfer of control is the capability of one task to
cause a change in the execution of another task when the tasks
are not synchronized. The task in which the change of execution
takes place during asynchronous transfer of control is the
"interrupted" task. Tasks are synchronized by performing a ren-
dezvous or by accessing a shared variable to which the pragma
Shared has been applied. The only Ada construct that allows
limited support for asynchronous transfer of control is the abort
statement.

There are at least three situations in which real-time systems
need to initiate asynchronous transfer of control: system mode
changes, retrieval of partial computational results, and fault
recovery [ACM88]. A system mode change occurs when one or more
tasks must be stopped or have their flow of control altered in
response to an external asynchronous event. Partial computations
are performed by tasks whose computations produce an approximate
result that is then refined over time to produce a precise
result. A task using this result may require the ability to ob-
tain the result at an arbitrary point in the computation. Fault
recovery stops or changes a task's execution in response to the
occurrence of some fault such as a task's exceeding its time con-
straints.

At the International Real-Time Ada Workshops (IRTAWs), real-time
system experts have proposed several modifications to the Ada
language. Each of these modifications was intended to provide a
long-range solution to the need for asynchronous transfer of con-
trol. At the 1988 IRTAW, the favored solution was to change the
Ada language to allow one task to raise an exception in another
task [ACM88]. At the 1989 IRTAW, the favored solution was to add
a new form of the selective wait statement. Until the completion
of the Ada 9X language review process, none of the proposed al-
ternatives will be available. Projects entering the design stage
near the end of the Ada 9X review process should track the review
process to determine if a mechanism will be provided that
enhances Ada's asynchronous transfer of control capability.

In the near term, three alternative approaches can be used to
achieve the result of an asynchronous transfer of control: poll-
ing, using the abort statement, and stepping outside Ada to con-
trol task execution.

The polling approach is designed to meet the need that motivates
asynchronous transfer of control. This need arises under the
following conditions:

A-60

Ada Reusability Handbook Real-Time Requirements Annex

1. A change in execution of the interrupted task must oc-
cur within time Ti of the occurrence of some event or
system state.

2. The worst case time between the synchronization points
in the interrupted task at which a change of execution
can take place is T2 (i.e., the task may execute se-
quentially or wait and sequentially execute for time
T2).

3. T2 > Ti (i.e., the time before the task reaches a
synchronization point at which it may change its execu-
tion may exceed the required response time Ti).

The polling strategy requires that the interrupted task check a
flag at least every Ti time units for an indication of the occur-
rence of the event or system state that requires the task to re-
start or change its control flow. The polling code is inter-
leaved with the normal task processing. Since Ada can implement
a variety of scheduling strategies, establishing the points at
which polling takes place depends on how the interrupted task is
scheduled. In order to select points at which polling code will
be inserted, the scheduling strategy must allow determination of
an upper bound on the execution time plus waiting time of the in-
terrupted task.

Unless both (1) the occurrence of the event requiring
asynchronous communication and (2) setting the flag that the in-
terrupted task is polling are a single atomic event, the design
of polling time intervals must take into account the time elapsed
between the event and the setting of the flag. In the illustra-
tion below, polling occurs at the numbered points on the time
line. The time between polling points is T1, the time within
which the interrupted task must restart or change its flow of
control. In Case 1, the event and the flag setting both occur in
the same polling interval; as a result the requirement is met
that the interrupted task respond in time TI. In Case 2, the
event occurs before polling point 3, and the event flag is set
after polling point 3. Thus the time required to respond is T1
plus the time from the event to polling point 3. In this case
the interrupted task does not meet the requirement of responding
within time Ti.

A-61

Real-Time Requirements Annex Ada Reusability Handbook

Case 1 Case 2

/J\ /\ __7

The disadvantages of polling are that it introduces program over-
head and significantly reduces the probability that a component
will be reusable. An efficient implementation of polling will
require the use of shared (i.e., visible to the tasks of inter-
est) variables which in turn introduces context dependencies that
must be supplied with each reuse of the component. An additional
disadvantage is that the period of polling is fixed by the inter-
leaving of polling code with normal task execution. Since dif-
ferent applications using a polling component typically require
different polling periods, the component must be retuned for each
application.

The abort statement can be used to emulate restartina a task or
changing its flow of control by first aborting a task and then
replacing it with either an identical copy or a different task.
Either use achieves the goal of an asynchronous transfer of con-
trol. The following model for simulating a restartable cyclic
task using the abort statement was presented at the 1988 Interna-
tional Workshop on Real-Time Ada Issues as a proof of concept
that the abort statement offers at least limited support for
asynchronous transfer of control[ACM88].

task Background is
-- Cyclic task that can be asynchronously restarted.

entry Restart;
-- POSTCONDITION : the task is restarted at the beginning
-- of its loop.

entry Finish;

-- For internal calls only.

end Background;

task body Background is

begin

A-62

Ada Reusability Handbook Real-Time Requirements Annex

loop
declare

task ComputingTask;
task body ComputingTask is

begin
Compute;
Background. Finish;

end Computing_Task;
begin

select
accept Restart;
abort ComputingTask;

or
accept Finish;
exit;

end select;
end;

end loop;
end Background;

This skeleton provides for the computing task and its enclosing
controlling task to terminate normally, if the computation task
finishes, or to have the computing task restarted, if the restart
entry of the controlling task is called. The skeleton can be
easily modified to provide for mode-changing emulation where a
different task is started after a mode change.

Using the abort statement may result in at least three sig-
nificant problems that may prevent its being a serious candidate
for implementation of asynchronous transfer of control:

1. Both the abort statement and the creation of new tasks
to replace the aborted tasks have high overhead

2. There is no guarantee that storage used for aborted
tasks will be reclaimed

3. The language definition does not guarantee that aborted
tasks will terminate if they enter an infinite loop
that does not contain synchronization points for the
abort statement.

If both polling and the abort statement can be used to produce a
component allowing asynchronous transfer of control (i.e., if
both meet timing requirements and the abort statement does not
generate memory problems), then the component produced using the
abort statement will have a higher probability of reuse: the
timing of the asynchronous transfer of control is not hardwired
into the component as it is with a component using polling.
However, the runtime behavior of the system will probably dictate
the choice of method for implementing or simulating asynchronous

A-63

Real-Time Requirements Annex Ada Reusability Handbook

transfer of control. For example, a long-running system that
does not reclaim storage for aborted tasks cannot use the abort
statement to construct components providing asynchronous transfer
of control because using the abort statement exhausts memory.

If neither polling nor the abort statement provides the required
response, the radical approach of directly manipulating the run-
time representation of tasks can be used. For example, one
project has successfully restarted tasks by using assembly lan-
guage to reset their stack and program counters. This approach
should be used only as a last resort, since the possibility of
producing unexpected program behavior is very high. If may also
be difficult to apply these techniques without violating Ada
semantics. What, for example, is the effect of resetting the
program counter and stack pointer of a server task engaged in a
rendezvous?

Guidelines for Asynchronous Transfer of Control follow.

Transportability Guideline 3.3-1: Use polling or abort constructs
before stepping outside the Ada language.

Discussion: These methods of achieving the goals of asynchronous
transfer of control are safer than direct manipulation of a
task's representation in the runtime system.

Transportability Guideline 3.3-2: Use the pragma Shared to
synchronize access to shared global flags used for the polling
solution to asynchronous transfer of control problem.

Discussion: The language definition requires the use of the
pragma Shared for shared variables accessed outside rendezvous.
Note that the pragma Shared simply ensures that each time a task
uses a shared variable it will work with the latest value of that
variable. Certain compiler optimizations that make it possible
for a task to work with an obsolete value of a shared variable
are prevented by the pragma Shared.

RTS Dependency Guideline 3.3-3: Write all tasks that may be
aborted so that they contain an abort synchronization point in-
side all loops that have the potential for executing in-
definitely.

Discussion: The language definition allows both asynchronous and
synchronous implementations of the abort statemunt. The
asynchronous abort stops a task at any point. The synchronous
abort stops a task only at abort synchronization points [RM
9.10(5-6)]. There are two methods of inserting abortion
synchronization points. The first is to insert delay statements
with a wait of 0.0. This method may have undesirable side-
effects depending on the implementation of the runtime system,
e.g., task rescheduling. The second is for a task to apply the

A-64

Ada Reusability Handbook Real-Time Requirements Annex

attribute Callable to itself to determine if it has been aborted
and to exit the loop if it has. This method can be used by in-
corporating the attribute Callable into a loop condition or exit
statement or by enclosing a call to an abortion synchronization
point inside an if statement. The three constructions below il-
lustrate the use of the attribute Callable to prevent an aborted
task from looping infinitely.

while SomeCondition and InterruptedTask'Callable loop
-- Some processing

end loop;

loop
-- Some processing
exit when not InterruptedTask'Callable;

end loop;

loop
-- Some processing
if not InterruptedTask'Callable then
abort InterruptedTask;

end if;
end loop;

An aborted task reaching an abort synchronization point im-
mediately becomes completed. Since the statement inside the if
in the third construction is an abort synchronization point, the
task becomes completed as soon as it reaches the statement, and
the statement is never executed. Therefore, it does not matter
what abortion synchronization statement is used [RM 9.10(6)].

The idioms using the attribute Callable prevent the possible un-
desirable side effects of using the statement "delay 0.0".
Therefore, components constructed using the idioms employing the
attribute Callable are more reusable. The statement "delay 0.0"
should be used only when it meets timing constraints that the
idioms using the attribute Callable fail to meet.

RTS Dependency Guideline 3.3-4: Document assumptions made about
the Ada run time when the abort statement is used to achieve
asynchronous transfer of control in the interface specification
of the component.

Discussion: The reusability of a component using the abort state-
ment depends on the assumptions made about the runtime executive
when the component was implemented. For example, the component
may assume that the runtime executive reclaims space allocated to
aborted tasks. If the component is used with a runtime that does
not support this assumption then unexpected storage errors may
occur when the component is reused.

A-65

Real-Time Requirements Annex Ada Reusability Handbook

4. Resource Control

4.1. Task Identification

In the development of reusable parts that dynamically control
resources under real-time constraints it is often necessary for a
part to be able to have some way of identifying the task that
encloses its execution. This identity may be used to locate
resources assigned to the part or to be passed as an entry call
parameter to another task that may perform some specific service
based upon this identity. For example, in the earlier paradigm
for changing task priorities, it was necessary for a task to be
able to identify itself.

One method of obtaining this identity is for a task to request it
from the task responsible for its activation, i.e., the parent or
creator task. This method usually requires that the two tasks
rendezvous so that the parent task can notify the newly activated
task of its identity. Normally, for tasks of the same type, the
identity is an index into an array of task objects. Unfor-
tunately, this method may be unsatisfactory in highly parallel
execution environments because each task cannot proceed with its
execution until the rendezvous with its parent task has been com-
pleted. To minimize the time each task is blocked because of the
enforced serialized execution, alternate approaches should be
considered that are reusable in both serial and parallel execu-
tion environments. Use of such alternatives requires that the
effect of performing the rendezvous be accomplished in some other
fashion. For example, one approach is illustrated in the follow-
ing reusable part where the identity of a task is established as
a result of its activation and is therefore immediately available
upon executing the task.

declare
Task Set Size : constant
type Reusable TaskSet_Type is range 1.. TaskSetSize;
-- Task type requiring identification.
task type Reusable_TaskType;
type ReusableTaskPointerType

is access ReusableTaskType;
type ReusableTask ArrayType

is array (ReusableTask_SetType)
of ReusableTaskPointerType;

Reusable Tasks : ReusableTaskArrayType;

task body Reusable_Task_Type is
-- Individual task identification established
-- as a result of task activation.
TaskId : constant ReusableTask_SetType

:= GlobalTaskId;
begin

A-66

Ada Reusability Handbook Real-Time Requirements Annex

end ReusableTaskType;

begin

for Task Id in ReusableTasks'Range loop
-- Assertion: GlobalTaskId is safe.
Global Task Id := TaskId;
Reusable_Tasks(TaskId) := new ReusableTaskType;

end loop;

end;

In the above example a set of tasks of the same task type are
referenced through an array of access types that designate the
task objects. The approach relies upon the identity task and its
parent having access to a global object, Global TaskId, that is
a value of the index type of the array. The example does not
show Global Task_Id, which is assumed to be visible to both
tasks. The value of this global object is maintained by the
parent task as the identification of the next task that it ac-
tivates as a result of evaluating the allocator. Since the al-
locator activates the identity task, elaboration of the task's
declarative part establishes a constant set to the current value
of this global object. As a consequence, the identity of the
task is available immediately upon execution. Using this ap-
proach, each task may commence execution without having to be
queued for service by its parent task. An informal assertion is
made that the global object is safe on the premise that it is
modified only within the loop and that the activation of the
identity is serialized as required by the RM for the evaluation
of the allocator.

This example uses a global object to present the technique simply
and efficiently for real-time applications. Unfortunately, there
is a flaw in using a simple global object: a task could
masquerade as another task by using, accidentally or
deliberately, a different task identity. This situation might
occur if the global object was referenced after the task had
begun execution and the parent task had activated additional
tasks. This flaw can be rectified by securing Global TaskId
within the private part of a package that declares Task Id Type
as limited private.

package SecureTaskId Package is

type Task_Id Type is limited private;

private

GlobalTaskId : ReusableTaskSetType;
NullTask_Id : constant ReusableTaskSetType :=
type TaskIdType is
record

A-67

Real-Time Requirements Annex Ada Reusability Handbook

TaskId : ReusableTask Set Type
:= GlobalTaskId;

end record;

end SecureTaskIdPackage;

The use of this package by a task would require that Task Id be
declared as a variable. This technique is safe, since the task
would not be able to change the variable since its type is
limited. However, to thwart a subsequent declaration that would
yield a different value from that resulting from task activation,
GlobalTaskId should be assigned a null value prior to the tasks
commencing execution. When the priority of the parent task is
greater than the created tasks, the parent may explicitly perform
the assignment as was shown in the paradigm for changing task
priority. Alternatively, a safer method is for the default as-
signment in the type declaration of Task Id Type to use a func-
tion that before returning the value of Global Task Id resets it
to the null value. The type declaration and function would then
be defined as follows:

function Set_TaskId return ReusableTaskSetType is
LocalTaskId : ReusableTaskSet_Type

:- GlobalTaskId;

begin
GlobalTask Id := NullTaskId;
return Local TaskId;

end SetTaskId;

type Task_Id_Type is
record
TaskId ReusableTaskSetType

SetTaskId;
end record;

Between the time of the assignment to the global object in the
parent task and its subsequent reference in the identity task,
another task may be able to intercept the value by executing in
parallel. If so, the global object must be protected through
some synchronization facility. This requirement may detract from
the efficiency of the technique.

Finally, when tasks of different types are to be identified, a
similar technique may be used. In this instance, a more complex
type of identification must be devised, such as the index value
combined with an access value that designates the task access
type array.

A-68

Ada Reusability Handbook Real-Time Requirements Annex

4.2. Interrupts

Endemic to real-time embedded applications is the requirement to
respond to external conditions or interrupts. The response
usually initiates processing of the interrupt, and in many in-
stances, the suspension of current processing, such as when
processing is interleaved on a single computer. In writing
reusable software, this requirement raises two important issues:
how to minimize the time to process the interrupt and how to en-
sure that there is no deleterious effect from asynchronously
suspending the currently executing task. It is not possible to
resolve these issues while safeguarding all the commonly under-
stood tenets of reusability. Consequently, a tradeoff is neces-
sary in order to develop guidelines that may rely on some degree
of cooperation from the underlying Ada Virtual Machine.

The minimization of interrupt processing time, while dependent
upon the idiosyncrasies of the runtime system, may be achieved by
writing interrupt handling software in a manner that is conducive
to its direct execution [ACM88b]. Direct execution allows the
task enclosing the interrupt handler to be executed without the
usual overhead of changing task context. This result is achieved
through specific restrictions on the construction of the inter-
rupt handler (the accept body that is bound to the interrupt
entry) and the assumption that the execution of the handler will
not be blocked or suspended unless it becomes necessary due to
the occurrence of another interrupt of higher priority. Op-
timally, the accept body should minimize references to local ob-
jects and subprogram calls; it should not precipitate the occur-
rence of a synchronization point. When processing associated
with the interrupt can be deferred, the accept body may include a
call to a trivial entry.

The notior of a trivial entry in writing interrupt handlers as
"signalling interrupt tasks" [ACM87a] may improve the reusability
of interrupt processing software. This improvement results be-
cause interrupt processing software execution time is function-
ally distributed in order to reduce the probability that inter-
rupts are lost and to enable the resumption of any suspended task
according to its priority. Since the accept statement for a
trivial entry does not include an accept body, the enclosing task
is at the accept statement the client task need not be suspended.
The only required action by the RTS is to update the entry queue
and to unblock the task enclosing the trivial entry. When the
client task is an interrupt handler, the task may then continue
execution, thereby reaching the interrupt entry with a minimum of
processing overhead. If no new interrupts are pending, any task
blocked by the execution of the interrupt handler may be executed
according to its priority. To ensure that the interrupt handler
is not suspended because the called task is not waiting at the
accept statement for the trivial entry, it is recommended prac-

A-69

Real-Time Requirements Annex Ada Reusability Handbook

tice to use a conditional entry call in the interrupt handler.
The following example illustrates the use of a trivial entry in
writing reusable interrupt processing software:

with SYSTEM;
generic

Int Address : SYSTEM.Address;
with procedure Contingency Processing;
with procedure ProcessInterrupt;

package ReusableIHPPackageTemplate is

task Interrupt SignallingTask is
entry Trap_Interrupt;
for TrapInterrupt use at Int_Address;
pragma Priority (SYSTEM.Priority'Last);

end InterruptSignallingTask;

task InterruptProcessingTask is
-- Assertion: Trivial entry
entry ForwardInterrupt;
pragma Priority (SYSTEM.Priority'Last-l);

end Interrupt_ProcessingTask;

end ReusableIHPPackageTemplate;

package body ReusableIHPPackageTemplate is

cask body InterruptSignallingTask is
begin

loop
-- Real-Time Assertion:
-- Loop execution can only become blocked due
-- to the delay between interrupts.
accept TrapInterrupt do

select
InterruptProcessingTask. ForwardInterrupt;

else
ContingencyProcessing;

end select;
end Trap_Interrupt;

end loop;
end InterruptSignallingTask;

task body InterruptProcessingTask is
begin

loop
accept ForwardInterrupt;
ProcessInterrupt;

end loop;
end Interrupt_ProcessingTask;

A-70

Ada Reusability Handbook Real-TiMe Requirements Annex

end ReusableIHPPackageTemplate;

Guidelines for Interrupts follow.

RTS Dependency Guideline 4.2-1: Document the use of trivial entry
calls.

Discussion: The reusability of interrupt processing software may
depend upon the use trivial entries. When there is an explicit
dependency by a reusable part for the RTS to recognize and sup-
port trivial entries, it must be documented.

RTS Dependency Guideline 4.2-2: Interrupt entries should ensure
that no dependence is placed upon the continuation of the
hardware task priority outside of the accept statement when the
associated entry is called as a result of a hardware interrupt.

Discussion: Typically, interrupt handlers are enclosed in a loop
statement. A reusable part for an interrupt handler should not
depend upon the continuation of the loop at the same priority
beyond the first synchronization point following completion of
the accept body. While some implementations may raise all inter-
rupt processing to that of the hardware task priority, this ap-
proach is inconsistent with the RM.

RTS Dependency Guideline 4.2-3: Avoid using a terminate alterna-
tive in a selective wait statement that encloses an accept alter-
native for an interrupt entry.

Discussion: Depending upon the implementation, the use of a ter-
minate alternative and an accept statement for an interrupt entry
in the same selective wait statement may prevent the termination
of a program. This effect is a result of an entry call's being
issued by a hardware task that is not required to meet the condi-
tions required for the terminate alternative to be selected.

RTS Dependency Guideline 4.2-4: The task specification for an in-
terrupt handler should only declare a single entry and the inter-
rupt to which it is bound.

Discussion: The reusability of an interrupt handler may depend
upon minimizing interrupt processing time. Therefore, to promote
direct execution of the accept body of the entry bound to an in-
terrupt, a task specification should only declare a single entry
and the interrupt to which it is bound.

RTS Dependency Guideline 4.2-5: The task body for an interrupt
handler should contain only the accept body for the interrupt
entry enclosed in a loop.

Discussion: The reusability of an interrupt handler may depend
upon minimizing interrupt processing time. Therefore, to promote
direct execution of the accept body of the entry bound to an in-

A-71

Real-Time Requirements Annex Ada Reusability Handbook

terrupt, a task body should contain only the accept body for the
interrupt enclosed in a loop without an associated iteration
scheme. However, using this technique does not relax the obser-
vance of Guideline 4.2-2.

RTS Dependency Guideline 4.2-6: An interrupt entry should be
called only by a hardware task.

Discussion: The reusability of an interrupt handler may depend
upon minimizing interrupt processing time. Therefore, to promote
direct execution of the accept body of the entry bound to an in-
terrupt, the entry should only be called as a result of an inter-
rupt, i.e., a hardware task.

4.3. Monitors and Semaphores

4.3.1. Binary Semaphores

A semaphore is a form of entry "counter" used to control the num-
ber of concurrently active execution threads in a critical code
section or other system resources. The counter value is modified
using the so-called P and V operations (hereafter referred to as
"seize" and "release" operations respectively) to record entry
into and departure from the critical section. Presumably, a bi-
nary semaphore would limit the value of the counter to "0" and
"1" as a way to guarantee that the critical section code is ex-
ecuted by only one thread at a time.

A literal implementation of this concept might use an integer
shared variable that is tested and incremented, or decremented,
as required. The obvious problem with this approach is that the
shared integer itself becomes "critical" if no fool-proof provi-
sion exists for blocking and queuing simultaneous, or nearly
simultaneous, attempts to reach the critical section. This need
to block and queue differentiates the semaphore from the more
elementary event flag. A simple Ada solution employs a rendez-
vous with a semaphore task such as the following:

task BinarySemaphore is
entry Seize;
entry Release;

end BinarySemaphore;

task body BinarySemaphore is
begin

loop
accept Seize; -- seize critical section
accept Release; -- release critical section

end loop;
end BinarySemaphore;

A-72

Ada Reusability Handbook Real-Time Requirements Annex

Upon initiation, the BinarySemaphore task immediately blocks at
the first accept statement inside the loop, waiting for a call to
the Seize entry. When the call arrives, a very brief rendezvous
occurs, after which the BinarySemaphore task blocks at its
second accept statement. Any further calls to the Seize entry
block (and queue up) until the task receives a call to the
Release entry, completes the rendezvous, and loops back again to
the first accept. Thus, used properly, this task provides the
blocking and queuing needed to coordinate access to a critical
section.

The description above illustrates operation of an initially
"unlocked" binary semaphore. The binary semaphore can be used in
the opposite manner by calling the Release entry first. The
semaphore then appears initially "locked," blocking the caller
until a Seize entry call causes back-to-back rendezvous and
recycles the semaphore.

One practical element is missing from the BinarySemaphore task:
it provides no means for terminating the task. The desirability
of being able to terminate the task in a real-time system is
likely to be application-dependent. One might ask, for example,
if the system will ever run to completion or simply run until the
processor fails. If termination is required, one might
consider effecting it as follows:

task BinarySemaphore is
entry Seize;
entry Release;
entry Stop;

end BinarySemaphore;

task body BinarySemaphore is
begin

loop
select
accept Seize; -- seize critical section

or
accept Stop;
exit;

end select;
select
accept Release; -- release critical section

or
accept Stop;
exit;

end select;
end loop;

end BinarySemaphore;

This approach would certainly work, but with a possibly undesired
side effect. A call to the Stop entry forces an immediate exit
from the loop and completes the execution of the task without

A-73

Real-Time Requirements Annex Ada Reusability Handbook

processing entry calls that may be queued at an entry controlled
by the other select. The loss of the entry calls (and the rais-
ing of the TASKING ERROR exception in the callers) can be avoided
by using an open terminate alternative in the select statement.
This approach, however, does cost some extra execution overhead
during each rendezvous [BUR86]. A version that uses an open ter-
minate alternative would look like this:

task BinarySemaphore is
entry Seize;
entry Release;

end BinarySemaphore;

task body BinarySemaphore is
begin

loop
select

accept Seize; -- seize critical section
or

terminate;
end select;
select
accept Release; -- release critical section

or
terminate;

end select;
end loop;

end BinarySemaphore;

Because of the overhead incurred, this approach is not recom-
mended. In addition, whether or not the BinarySemaphore task
should be stopped with the critical section still unreleased, as
the second select permits, is problematical and depends on the
needs of the application.

During the development of the BinarySemaphore code, it may be-
come desirable to encapsulate the task in a package, perhaps for
reasons of reusability. However, if such a package is provided
as a library package, the execution behavior of the task may be
affected. Ada does not define how such tasks terminate; the ex-
ecution of the terminate is implementation-dependent. Therefore,
the open terminate alternative form of the BinarySemaphore could
terminate unpredictably any time after elaboration. An altered
version that provides a Stop entry to invoke the terminate alter-
native has the virtue of at least postponing the uncertainty un-
til after the task is told explicitly to terminate. It also
prevents incurring the additional select statement execution
overhead (imposed by the open terminate alternative [BAK85])
during normal seize and release processing. An even better ap-
proach is to have the package export a Binary Semaphore task type
rather than the task itself so that the task object may reside in
a construct other than a library package. Such a version is
presented in Guideline 1.4.3-1 below.

A-74

Ada Reusability Handbook Real-Time Requirements Annex

The implementation of a binary semaphore is straightforward and
simple to use, but it may not be suitable for every real-time ap-
plication. For example, it is not clear that it will execute
quickly enough due to the context switching overhead it incurs.
However, a sufficiently sophisticated compiler may be able to
remove the task call through (Habermann-Nassi) optimization and
replace it with in-line references to one or more operating sys-
tem event flags, thereby eliminating the context switch.

Guidelines for Binary Semaphores follow.

Efficiency Guideline 4.3-1: If termination of a binary semaphore
task is a requirement, use an explicit termination entry point
rather than an open terminate alternative.

Discussion: An open terminate alternative incurs additional over-
head each time the enclosing select statement is executed. The
following example employs an explicit termiadtion entry point in
a binary semaphore task type that is exported by a package. By
exporting a type rather than the task itself, the task object may
be created in a suitable master construct and better control over
task termination may be achieved.

package BinarySemaphorePackage is
task type BinarySemaphoreType is
entry Seize;
entry Release;
entry Stop;

end BinarySemaphoreType;
end BinarySemaphorePackage;

package body BinarySemaphore_Package is
task body BinarySemaphoreType is

Stopped : Boolean := false;
begin

loop
select
accept Seize; -- seize critical section

or
accept Stop;
Stopped := true;

or
when Stopped =>

terminate;
end select;
accept Release; -- release critical section

end loop;
end BinarySemaphoreType;

end BinarySemaphorePackage;

A-75

Real-Time Requirements Annex Ada Reusability Handbook

Efficiency Guideline 4.3-2: Consider avoiding the use of binary
semaphores except in an application that will be developed using
a compiler capable of optimizing simple tasks completely out of
the executable code.

Discussion: A high-speed application with very tight timing re-
quirements may not be able to use a binary semaphore because of
the overhead incurred when the semaphore remains a separate task
in the final executable image.

Reliability Guideline 4.3-3: Encapsulate the binary semaphore
and the critical section in a package that exports a procedure
that provides the only way to access the semaphore and the code
it guards.

Discussion: A package of this sort is actually a form of monitor,
which should be the preferred form of protection for a critical
section. The implicit suggestion here is that a binary semaphore
used by itself is not the safest way to proceed since its use be-
comes, in effect, voluntary. A task or subprogram that is sup-
posed to call the semaphore may "forget" to do so and then ex-
ecute the critical section anyway. Worst of all, the application
may just happen to work correctly during testing, hiding its fa-
tal flaw until too late. The encapsulated semaphore might appear
as follows:

package CriticalSection Package is
procedure CriticalSection;

end CriticalSectionPackage;

with BinarySemaphorePackage;
package body CriticalSectionPackage is

package BSP renames BinarySemaphore_Package;
BinarySemaphore : BSP.BinarySemaphoreType

procedure CriticalSection is
begin
BinarySemaphore. Seize;

-- critical section code

BinarySemaphore.Release;
end;

end CriticalSectionPackage;

4.3.2. General Semaphores

A general semaphore provides controlled access to a group of re-
lated resources. It keeps a count of available resources, decre-
ments the count for each access request, and then blocks and

A-76

Ada Reusability Handbook Real-Time Requirements Annex

queues any access requests that arrive after all the resources
have been allocated. When a resource is released, the next call
on the entry queue is processed and allowed access to the
resource.

A general semaphore requires three constructs. First is a set of
two procedures that provide the Seize and Release capability that
the client tasks use to make their access requests. Second is a
binary semaphore used to ensure mutual- exclusion execution of
the critical (resource count manipulation) code in the two proce-
dures. Third is another binary semaphore that is used to buffer
requests that must wait because the requested resource is ex-
hausted.

Buffering at a binary semaphore is accomplished by queuing re-
quest calls at the Release entry while the semaphore task waits
for rendezvous at its Seize entry. This is the initially
"locked" mode of operation. Thereafter, as long as there are re-
quests in the queue, the Seize entry is called each time a client
task releases resources. This call causes a Seize rendezvous, a
Release rendezvous that releases the next access request, and a
recycling of the semaphore task to block again at the Seize
entry.

For the following example, assume a package
BinarySemaphorePackage that exports a task type
BinarySemaphoreType, and a package GlobalData that exports
resource counter RCount (initialized to some positive value).

package GeneralSemaphorePackage is
procedure Seize;
procedure Release;

end GeneralSemaphorePackage;

with BinarySemaphorePackage;
with Global Data;
package body GeneralSemaphore_Package is

package BSema renames BinarySemaphorePackage;

-- mutual exclusion semaphore
Sema Mutex : BSema.BinarySemaphore_Type;
-- buffer semaphore
Sema Buffer : BSema.BinarySemaphore_Type;
procedure EnqueueRequest renames SemaBuffer.Release;
procedure DequeueRequest renames ScmaBuffer.Seize;

procedure Seize is -- resource request
begin

Sema Mutex.Seize; -- seize counter
Global Data.R Count := Global Data.RCount - 1;
if GlobalData.RCount < 0 then -- resource exhausted
SemaMutex.Release; -- release counter

A-77

Real-Time Requirements Annex Ada Reusability Handbook

EnqueueRequest; -- queue request
end if;

SemaMutex.Release; -- release counter
end Seize;

procedure Release is -- resource release
begin
Sema Mutex.Seize; -- seize counter
Global Data.R Count := Global Data.R Count + 1;
if GlobalData.RCount <= 0 then -- request is waiting
DequeueRequest; -- de-queue request

end if;
SemaMutex.Release; -- release counter

end Release;

end GeneralSemaphorePackage;

Guidelines for General Semaphores follow.

Efficiency Guideline 4.3-4: Analyze timing considerations when
proposing the use of a general semaphore and design to minimize
the occurrence, if possible, of requests for a resource when the
resource supply is exhausted.

Discussion: In the absence of the proposed Habermann and Nassi
rendezvous optimization, the general semaphore provides a pos-
sibly expensive (in execution overhead) capability for control-
ling access to shared resources. The mechanism requires four
context switches when resources are maximally allocated, possibly
the very time when processor cycles are most in demand. Other-
wise, just as with the binary semaphore, only two context
switches are required when a resource is immediately available.

Reliability Guideline 4.3-5: Where use of a general semaphore is
indicated, consider substituting a monitor.

Discussion: A Lasic general semaphore used by itself has the same
enforcement limitation as a binary semaphore in that its use is
"voluntary" and is effective only if it is called in every in-
stance in which it is required. The use of the semaphore func-
tion can be. enforced by packaging it together with the resource
being requested. The resulting structure will be a monitor that
accomplishes the same goal much more safely.

4.3.3. Monitors

A monitor is a program construct that enforces a protocol of
using predefined procedures for access to shared data. The basic
feature of a monitor is that it includes (or encapsulates) a col-
lection of shared data and the procedures that access the data.

A-78

Ada Reusability Handbook Real-Time Requirements Annex

The critical sections are located within the procedures control-
led by the monitor. The code is designed so that only one
process may be executing in the monitor (i.e., executing one of
the procedures) at any one time. This arrangement ensures that
the shared data are neither accessed outside the monitor nor
simultaneously. Hence mutual exclusion is ensured. The monitor
was proposed by Brinch Hansen [BR173] and further developed by
Hoare [HOA74] (Shumate, p.39].

The following is an imaginary monitor construct written in Ada-

like syntax:

monitor ItemSection is -- ! this is not Ada '

Item : Integer;

procedure Add (Amount : in Integer) is
begin

Item := Item + Amount;
end Add;

begin -- initialization of the monitor
Item := 17;

end ItemSection;

This monitor includes the implicit provision that calls are
serialized so that the procedure Add is executed indivisibly on
behalf of each caller. The initialization portion of the monitor
is executed only once--before the monitor accepts any calls to
the monitor procedure. The result is that Item is properly
incremented even by multiple simultaneous calls to Add, because
the monitor ensures that the calls are executed serially and in-
divisibly [Shumate, pp. 39-40].

A real Ada monitor can be built as a package of visible proce-
dures together with a hidden task that encapsulates the shared
data. The hidden task is simply an expansion of a binary
semaphore that includes a sequence of statements effecting some
manipulation of shared data during the rendezvous. The following
is an example of an Ada monitor package [Shumate, p.65].

package Monitor is
procedure AddData (Amount : in Integer);
procedure ReadData (Total : out Integer);
procedure Stop Monitor;
pragma Inline (Add_Data, Read_Data);

end Monitor;

package body Monitor is

task Mutex is
entry AddData (Amount : in Integer);
entry Read_Data (Total : out Integer);

A-79

Real-Time Requirements Annex Ada Reusability Handbook

entry Stop;
end Mutex;

task body Mutex is
Sum : Integer;
Stopped : Boolean;

begin
Sum := 0;
loop

select
accept AddData (Amount : in Integer) do
Sum := Sum + Amount;

end AddData;
or

accept Read Data (Total : out Integer) do
Total := Sum;

end ReadData;
or

accept Stop;
Stopped := true;

or
when Stopped =>

terminate;
end select;

end loop;
end Mutex;

procedure Add-Data (Amount : in Integer) is
begin
Mutex.Add Data (Amount);

end AddData;

procedure ReadData (Total : out Integer) is
begin
Mutex.ReadData (Total);

end ReadData;

procedure StopMonitor is

begin
Mutex. Stop;

eii StopMonitor;

end Monitor;

The interface to the shared data is through the procedures in the
package specification. They are "Inline" in order to avoid the
overhead of a procedure call. The package body reveals that they
do nothing but call the appropriate entries in the task "Mutex"
(for MUTual EXclusion). Such procedures are called "entrance
procedures" [Shumate, p.66].

Guidelinez for Monitors follow.

A-80

Ada Reusability Handbook Real-Time Requirements Annex

Efficiency Guideline 4.3-6: Use pragma Inline (assuming it is
appropriately supported in the implementation being used) for the
entrance procedures of a monitor.

Discussion: This optimization avoids incurring the overhead of a
procedure call on the part of the calling subprogram or task.

Reliability Guideline 4.3-7: Use a monitor construct instead of
a binary semaphore to control multiple simultaneous access to
shared data.

Discussion: The monitor encapsulates not just the critical sec-
tions of code that manipulate the shared data, but also the data
itself. Therefore, disciplined access to the data must be ob-
served. The protocol is not voluntary, eliminating the chances
of sidestepping it accidentally.

Reliability Guideline 4.3-8: Use a monitor construct instead of
a general semaphore to control multiple simultaneous access to a
resource.

Discussion: With the use of the pragma Inline (assuming it is
appropriately supported in the implementation being used), the
monitor form of the general semaphore incurs no more overhead
than a general semaphore, i.e. up to four context switches, but
affords greater protection.

4.4. Storage Reclamation and Reuse

One of the constraints placed on real-time systems is the re-
quirement to meet time deadlines. For embedded systems, the con-
straint of limited memory capacity is also likely to be imposed.
This constraint means that the available capacity must be care-
fully managed so that there will always be sufficient memory to
accommodate the application code and static data, the Run Time
System (RTS), and the need for additional space reserved for
dynamic memory allocation.

The use of dynamically allocated memory introduces the need for
reclamation. For the purposes of this discussion, the terms
storage allocation, storage deallocation, and storage reuse are
considered to be within the domain of an Ada application. The
terms memory allocation and (automatic) memory reclamation are
considered to be in the RTS domain. Requirements for RTS dynamic
memory allocation may occur implicitly and explicitly during ex-
ecution of an Ada program. Allocation is implicit in support of
procedure calls, task activations, etc. It is controllable only
indirectly through careful structuring of program modularity and
selective use of language features. Allocation is explicit
through use of the "new" allocator, the use of which, of course,
is optional. Whether implicitly or explicitly, RTS must manage

A-81

Real-Time Requirements Annex Ada Reusability Handbook

(allocate and reclaim) the system memory involved. However, ex-
actly what the RTS does and how it does it may vary among
products, product versions, and target machines.

Automatic memory reclamation of dynamically allocated objects can
be a time-consuming asynchronous activity occurring at unpredict-
able intervals. This situation may not provide a good environ-
ment for a very time-critical real-time application. However, in
an embedded real-time system having relatively little free memory
space, the need to reuse deallocated storage is likely to be cru-
cial to the long-term successful operation of the system.
Without RTS storage reclamation or application reuse of storage
for explicitly allocated objects, space associated with deallo-
cated objects may not become available until expiration of the
scope containing the definition of their access types. If the
act-ess type definitions occur in the outermost scope of the
program, storage reclamation may never be done, and the applica-
tion may eventually abort (raising the Storage_Error exception)
due to memory space exhaustion.

It is important, therefore, that the design of an application
provide an explicit memory management strategy to increase the
predictability of memory usage. Running out of memory is a
problem that can be very difficult to detect if it is a slowly
developing condition. The longer it takes for the application to
fill all its memory space, the less likely it is that formal
testing will reveal the problem before the system's delivery and
deployment.

Ada has no mechanism to ensure that deallocated storage is
reclaimed. The explicit deallocation of the object designated by
an access value can be achieved by calling a procedure obtained
by instantiation of the predefined generic library procedure
UNCHECKEDDEALLOCATION [RM 4.8-12]. Unfortunately, the Ada
Reference Manual is inconsistent regarding the reclamation duties
of an implementation, wavering between "may (but need not)
reclaim" [RM 4.8-7] and "is to be reclaimed" [RM 13.10.1-5].
However, the current consensus seems to be that the definition of
UNCHECKEDDEALLOCATION allows but does not require that the
storage occupied by the designated object be reclaimed [RAT86
6.3.7 and AALC AI-00356]. It requires only that the object be-
come inaccessible. Hence, simply assigning the null access value
to the procedure argument is a legal implementation of
UNCHECKEDDEALLOCATION. In the absence of knowledge concerning a
specific Ada implementation, that is all one can count on.

The effect of a call to UNCHECKED DEALLOCATION on storage
reclamation, to whatever extent it is performed by the RTS, is
unaffected by the existence of multiple (alias) access values
referencing the object being deallocated. The deallocation is by
definition unchecked, and the implementation is free to reclaim
the storage immediately if not otherwise constrained. Therefore,
the application must not assume that any non-null access value

A-82

Ada Reusability Handbook Real-Time Requirements Annex

will prevent storage reclamation for the designated object, and
must be aware that use of alias access values may result in er-
roneous execution.

Access types can reference either data objects or task objects,
the latter having different deallocation characteristics. When
the argument in a call to procedure UNCHECKEDDEALLOCATION
references a task object, the call has no effect on the task
designated by the value of the argument. The same holds for any
subcomponent of the task object, if that subcomponent is itself a
task object (RM 13.10.1-8). Therefore, controlling reclamation
of task object storage requires achieving control over the ex-
piration of the containing program scope.

The guidelines below address approaches to the safe control of
storage reclamation in real-time applications.

RTS Dependency Guideline 4.4-1: Use a storage management package
that implements application-controlled storage reuse.

Discussion: Two major approaches to the design of such a storage
management package derive from a decision either to allocate
statically at one time all the storage that will ever be needed
or to allocate dynamically and accumulate the storage on an as-
needed basis. An example of a storage management package
designed around the first approach is presented in [KOW87]. As
presented, storage management support is provided in a generic
library package, with the stored object type being a generic for-
mal parameter of the package. A pool of storage is defined at
the point of generic instantiation, and objects are
allocated/deallocated using one of the Allocate or Free sub-
programs. The major techniques adopted are Mark/Release, to al-
low dynamic control over entire blocks of storage; Save/Free, to
retain access to selected "saved" objects within the released
block; and Reference Counting, to recycle unreachable storage by
maintaining a count of "live" (possibly alias) references to an
object with reuse initiated when the count drops to zero.

An example of the second approach is in [MEN87]. The author
presents two variations: (1) an abstraction-specific model
oriented toward a single object type and providing control over
the creation of and reference to aliases and (2) an abstraction-
independent model whose purpose is to export only dynamic memory
management without controlling the object type or the aliasing
problem. In either case, initial and additional storage is ob-
tained through use of the "new" allocator. When the storage is
no longer needed, it is set aside on a free list for reuse. Thus
the amount of system memory used expands as the object (e.g., a
linked list) grows, but does not decrease when the object
shrinks. The difference remains allocated as far as the RTS is
concerned, but is available on the free list for any future reex-
pansion of the object.

A-83

Real-Time Requirements Annex Ada Reusability Handbook

RTS Dependency Guideline 4.4-2: Use static allocation as much as
possible to provide greater predictability of storage use and al-
low for better compiler optimization.

Discussion: Ada compilation systems commonly use heap storage for
manipulation of unconstrained arrays. Using constrained arrays
wherever possible reduces the chances of unexpected memory deple-
tion or memory reclamation overhead. If constrained arrays ad-
versely affect memory usage, the problem will probably surface
during system development rather than becoming an emergency in
the field. In addition, better optimization and the lack of RTS
storage reclamation processing both contribute to faster system
operation. The degree to which this strategy can succeed depends
on the amount of memory available and the extent to which the ap-
plication can be structured to allow safe reference to the ob-
jects involved.

RTS Dependency Guideline 4.4-3: Perform bit packing to save
storage space, and apply storage limits on a per-access-type
basis to gain firmer control over dynamic memory allocation.

Discussion: The bit size of an object can be specified by
referencing its type name in conjunction with the SIZE attribute
in a length clause. The space saving actually realized may be
implementation-dependent. Further control over the use of memory
by multiple occurrences of a specific object is also available.
The total amount of storage available for a collection of objects
of an access type (or for task activation) can be set by using
the STORAGE SIZE attribute in a length clause. If the applica-
tion attempts to allocate more objects than will fit into the
space reserved with the length clause, the STORAGEERROR excep-
tion will be raised. This result, analogous to raising the
CONSTRAINTERROR exception for exceeding the index range of an
array, may indicate that the application is not allocating the
objects as intended.

RTS Dependency Guideline 4.4-4: Use the CONTROLLED pragma to
eliminate the possibility that RTS-controlled storage reclamation
will use system resources during execution of very time-critical
sections of code.

Discussion: If a particular Ada implementation performs storage
reclamation, there is a provision for delaying that activity.
The pragma CONTROLLED informs the implementation that automatic
storage reclamation must not be performed for objects designated
by values of the specified access type, except upon leaving the
innermost block statement, subprogram body, or task body that
encloses the access type declaration, or after leaving the main
program (RM 4.8(b)).

A-84

Ada Reusability Handbook Real-Time Requirements Annex

RTS Dependency Guideline 4.4-5: Consider structuring active
tasks that have short lifetimes (relative to the lifetime of the
main program) within scopes that can be forced to expire as
necessary, thereby allowing the storage allocated to the task to
be reclaimed.

Discussion: An example of this technique is described in [LEF87].
The basic concept is to declare a "dynamic" task within a recur-
sive "master" block (block statement or subprogram), which is it-
self declared within and activated by a "base" task. A separate
"access controller" task performs as the interface between the
main application code and the "base" task by synchronizing task
creation/deallocation commands from the application with
recurse/unrecurse queries from the "master" block. Although this
approach is not without its limitations (e.g., it requires time
and space overhead to establish the additional base structures),
it can apparently provide memory-efficient tasking in active
real-time systems. Lefebvre claims that his implementation of
this dynamic tasking utility "is currently being used within a
large-scale real-time Ada project." Unfortunately, because the
implementation of this utility is not trivial, it is not feasible
to present a simple example here. The correct operation of the
utility has not been verified.

A-85

Real-Time Requirements Annex Ada Reusability Handbook

REFERENCES

[AALC] Approved Ada Language Commentaries. Ada Letters. AI-
00356/08, vol. IX, no. 3, Spring 1989.

[ACM77] Toward a Discipline of Real-Time Programming. Comm. ACM
Volume 20 number 8, August 1977.

[ACM87a] Catalog of Interface Features and Options. ACM SIGAda
Ada Runtime Environment Working Group, 1987.

[ACM87b] International Real-Time Ada Issues Workshop. ACM SIGAda
Ada Letters Volume VII Number 6, 1987.

[ACM88a] International Real-Time Ada Issues Workshop. ACM
SIGAda Ada Letters, Volume VIII Number 7, 1988.

[ACM88b] A Model Runtime System Interface for Ada. ACM SIGAda
Ada Runtime Environment Working Group, August 1988.

[AUK88] The Virtual Node Approach to Desiqning Distributed Ada
Programs. Ada Language UK Ada User, 1988.

[AVI84] Avizienis, A. and J.P.J. Kelly, "Fault Tolerance by
Design Diversity: Concepts and Experiments," IEEE Com-
puter, August, 1984.

[AVI85] Avizienis, A., "The N-Version Approach to Fault-
Tolerant Software," IEEE Transactions on Software En-
gineering, December 1985.

(BAK85] Baker, T.P. and G.A. Riccardi, "Ada Tasking: From
Semantics to Efficient Implementation," IEEE Software.
March 1985.

[BAR84] Barnes, J.G.P., Programming in Ada, Addison-Wesley,
1984

[BR173] Brinch Hansen, P., Operating System Principles,
Prentice-Hall Inc., Englewood Cliffs, N.J., 1973.

[BUH84] Buhr, R.J.A., System Design with Ada, Prentice-Hall,
1984

(BUR87] Burger, T.M., and K.W. Neilsen, "An Assessment of the
Overhead Associated with Tasking Facilities and Task
Paradigms in Ada," Ada Letters, vol. VII, no. 1,
January/February 1987.

[CEC84] Real-Time Systems In Ada, U.S. Army CECOM/CENTACS, 1984

A-86

Ada Reusability Handbook Real-Time Requirements Annex

[CEC88] Real-Time Technical Interchange Meeting: Real-Time &
Reuse Working Group, US Army CECOM/CSE, July 1988.

(CEC89] Final Report - Real-Time Ada Demonstration Project, US
Army CECOM/CSE, May 1989.

[CHE88] Cheng, J., K. Araki, and K. Ushijima, "Tasking Com-
munication Deadlocks in Concurrent Ada Programs," Ada
Letters, September/October 1988

[CMUSEI] Sha, L., and Goodenough, J., Real-Time Scheduling
Theory and Ada, Technical Report CMU/SEI-89-TR-14 ESD-
TR-89-22, Software Engineering Institute and Carnegie-
Mellon University, April, 1989

(CSC86] Ada Reusability Study. Computer Sciences Corporation,
Technical Report SP-IRD 9, August 1986.

[CSC87] Ada Reusability Handbook. Computer Sciences Corpora-
tion, Technical Report SP-IRD 11, April 1987.

[CUP88] Ada for Distributed Systems. Cambridge University
Press, the Ada companion Series, 1988.

[HAB80] Habermann, A.N. and A.R. Nassi, Efficient Implementa-
tion of Ada Tasks, Department of Computer Science,
Carnegie-Mellon University, 1980.

[HOA74] Hoare, C.A.R., "Monitors: An Operating System Structur-
ing Concept," Communications of the ACM, vol. 17, no.
10, October 1974.

[KN187] Knight, J.C., and J.A.A. Urquhart, "On the Implementa-
tion and Use of Ada on Fault-Tolerant Distributed
Systems," IEEE Transactions on Software Engineering,
May 1987.

(KOW87] Kownacki, R., and S.T. Tift, "Portable and Efficient
Storage Management in Ada," Ada Letters, Using Ada: ACM
SIGAda International Conference, December 1987.

[LEF87] Lefebvre, P.J., "Reclamation of Memory for Dynamic Ada
Tasking," Ada Letters. Using Ada: ACM SIGAda Interna-
tional Conference, December 1987.

[LEV89] Levine, G., "Controlling Deadlock in Ada," Ada Letters,
May/June 1989

[MEN87] Mendal, G.O., "Storage Reclamation Models for Ada
Programs," Ada Letters, Using Ada: ACM SIGAda Interna-
tional Conference, December 1987.

A-87

Real-Time Requirements Annex Ada Reusability Handbook

[RAN75] Randell, B., "System Structure for Software Fault
Tolerance," IEEE Transactions on Software Engineering,
June 1975.

[RAT86] Rationale for the Design of the Ada Programming Lan-
guage. Honeywell Systems and Research Center/ Alsys,
Inc., 1986.

[RM] Military Standard: Ada Programming Language. Department
of Defense, ANSI/MIL-STD-1815A, January 1983.

[SHU88] Shumate, K., Understanding Concurrency In Ada, McGraw-
Hill, 1988

[WEN78] Wensley, J.H., et al., "SIFT: Design and Analysis of a
Fault-Tolerant Computer for Aircraft Control," Proceed-
ings of the IEEE, October 1978.

A-88

